Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Biol Rep ; 48(1): 875-886, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33389539

RESUMO

Cardiovascular diseases (CVD) have overtaken infectious diseases and are currently the world's top killer. A quite strong linkage between this type of ailments and elevated plasma levels of triglycerides (TG) has been always noticed. Notably, this risk factor is mired in deep confusion, since its role in atherosclerosis is uncertain. One of the explanations that aim to decipher this persistent enigma was provided by apolipoprotein C-III (apoC-III), a small protein historically recognized as an important regulator of TG metabolism. Preeminently, hundreds of studies have been carried out in order to explore the APOC3 genetic background, as well as to establish a correlation between its variants and dyslipidemia-related disorders, pointing to an earnest predictive power for future outcomes. Among several polymorphisms reported within the APOC3, the SstI site in its 3'-untranslated region (3'-UTR) was the most consistently and robustly associated with an increased CVD risk. As more genetic data supporting its importance in cardiovascular events aggregate, it was declared, correspondingly, that apoC-III exerts various atherogenic effects, either by intervening in the function and catabolism of many lipoproteins, or by inducing endothelial inflammation and smooth muscle cells (SMC) proliferation. This review was designed to shed the light on the structural and functional aspects of the APOC3 gene, the existing association between its SstI polymorphism and CVD, and the specific molecular mechanisms that underlie apoC-III pathological implications. In addition, the translation of all these gathered knowledges into preventive and therapeutic benefits will be detailed too.


Assuntos
Apolipoproteína C-III/genética , Aterosclerose/genética , Hiperlipoproteinemia Tipo I/genética , Hipertrigliceridemia/genética , Placa Aterosclerótica/genética , Polimorfismo Genético , Regiões 3' não Traduzidas , Apolipoproteína C-III/antagonistas & inibidores , Apolipoproteína C-III/sangue , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Fármacos Cardiovasculares/uso terapêutico , Ensaios Clínicos como Assunto , Expressão Gênica , Humanos , Hiperlipoproteinemia Tipo I/sangue , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Hiperlipoproteinemia Tipo I/patologia , Hipertrigliceridemia/sangue , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/patologia , Oligonucleotídeos/uso terapêutico , Placa Aterosclerótica/sangue , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Fatores de Risco , Triglicerídeos/sangue
2.
Molecules ; 26(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361588

RESUMO

Psophocarpus tetragonolobus has long been used in traditional medicine and cuisine. In this study, Psophocarpus tetragonolobus extracts were isolated by maceration and ultrasound-assisted extraction and were evaluated for their antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The obtained results show that both extracts (maceration and ultrasound) were rich in bioactive molecules and exerted substantial antioxidant and anti-inflammatory effects. The P. tetragonolobus extracts' treatment in LPS-stimulated RAW264.7 macrophages resulted in a significant downregulation of the expressions of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß mRNA. In addition, the P. tetragonolobus extracts' treatment attenuated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression. Our observations indicate that there is no significant difference between the two studied extracts of P. tetragonolobus in terms of biological properties (specifically, antioxidant and anti-inflammatory effects. Regardless of the extraction method, P. tetragonolobus could be used for treating diseases related to oxidative stress and inflammatory reactions.


Assuntos
Anti-Inflamatórios , Antioxidantes , Fabaceae/química , Macrófagos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Ondas Ultrassônicas
3.
Arch Biochem Biophys ; 654: 55-69, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30016634

RESUMO

Myeloperoxidase is a member of the mammalian peroxidase family, mainly expressed in the myeloblastic cell lineage. It is considered a major bactericidal agent as it is released in the phagosome where it catalyzes the formation of reactive oxygen species. It is also released in the extracellular spaces including blood where it is absorbed on (lipo)proteins and endothelial cell surface, interfering with endothelial function. We performed RNA sequencing on MPO-treated endothelial cells, analyzed their transcriptome and validated the profile of gene expression by individual qRT-PCR. Some of the induced genes could be grouped in several functional networks, including tubulogenesis, angiogenesis, and blood vessel morphogenesis and development as well as signal transduction pathways associated to these mechanisms. MPO treatment mimicked the effects of VEGF on several signal transduction pathways, such as Akt, ERK or FAK involved in angiogenesis. Accordingly MPO, independently of its enzymatic activity, stimulated tube formation by endothelial cells. RNA interference also pointed at a role of endogenous MPO in tubulogenesis and endothelium wound repair in vitro. These data suggest that MPO, whether from endogenous or exogenous sources, could play a role in angiogenesis and vascular repair in vivo.


Assuntos
Endotélio Vascular/enzimologia , Sistema de Sinalização das MAP Quinases , Peroxidase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Transformada , Humanos , Neovascularização Patológica/metabolismo , Processamento de Proteína Pós-Traducional , Transcriptoma
4.
Eur J Pharmacol ; 977: 176719, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38849038

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into multiple lineages including bone, cartilage, muscle and fat. They hold immunomodulatory properties and therapeutic ability to treat multiple diseases, including autoimmune and chronic degenerative diseases. In this article, we reviewed the different biological properties, applications and clinical trials of MSCs. Also, we discussed the basics of manufacturing conditions, quality control, and challenges facing MSCs in the clinical setting. METHODS: Extensive review of the literature was conducted through the databases PubMed, Google Scholar, and Cochrane. Papers published since 2015 and covering the clinical applications and research of MSC therapy were considered. Furthermore, older papers were considered when referring to pioneering studies in the field. RESULTS: The most widely studied stem cells in cell therapy and tissue repair are bone marrow-derived mesenchymal stem cells. Adipose tissue-derived stem cells became more common and to a lesser extent other stem cell sources e.g., foreskin derived MSCs. MSCs therapy were also studied in the setting of COVID-19 infections, ischemic strokes, autoimmune diseases, tumor development and graft rejection. Multiple obstacles, still face the standardization and optimization of MSC therapy such as the survival and the immunophenotype and the efficiency of transplanted cells. MSCs used in clinical settings displayed heterogeneity in their function despite their extraction from healthy donors and expression of similar surface markers. CONCLUSION: Mesenchymal stem cells offer a rising therapeutic promise in various diseases. However, their potential use in clinical applications requires further investigation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Biotecnologia/métodos , COVID-19
5.
Biol Methods Protoc ; 9(1): bpae020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680163

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is unceasingly spreading across the globe, and recently a highly transmissible Omicron SARS-CoV-2 variant (B.1.1.529) has been discovered in South Africa and Botswana. Rapid identification of this variant is essential for pandemic assessment and containment. However, variant identification is mainly being performed using expensive and time-consuming genomic sequencing. In this study, we propose an alternative RT-qPCR approach for the detection of the Omicron BA.1 variant using a low-cost and rapid SYBR Green method. We have designed specific primers to confirm the deletion mutations in the spike (S Δ143-145) and the nucleocapsid (N Δ31-33) which are characteristics of this variant. For the evaluation, we used 120 clinical samples from patients with PCR-confirmed SARS-CoV-2 infections, and displaying an S-gene target failure (SGTF) when using TaqPath COVID-19 kit (Thermo Fisher Scientific, Waltham, USA) that included the ORF1ab, S, and N gene targets. Our results showed that all the 120 samples harbored S Δ143-145 and N Δ31-33, which was further confirmed by whole-genome sequencing of 10 samples, thereby validating our SYBR Green-based protocol. This protocol can be easily implemented to rapidly confirm the diagnosis of the Omicron BA.1 variant in COVID-19 patients and prevent its spread among populations, especially in countries with high prevalence of SGTF profile.

6.
Int Immunopharmacol ; 96: 107778, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34162145

RESUMO

Following induction of inflammation, the nuclear factor kappa B (NF-κB) in activated macrophages induces the transcription of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and cyclooxygenase (COX), an inflammatory enzyme implicated in the synthesis of prostaglandins (PGs). The latter are involved in the transition and the maintenance of chronic inflammation underling various chronic disorders that require treatment. Concerning this, many anti-inflammatory drugs are available to treat the inflammatory disorders, but their therapeutic use is associated with a variety of side effects. Therefore, the discovery of new safer and potential anti-inflammatory drugs is necessary. In this regard, thiosemicarbazones (TSC) compounds and their metals complexes attracted high interest due to their wide range of biological activities, interestingly, the anti-inflammatory activity. They are formed by the action of thiosemicarbazide on an aldehyde or ketone, and contain a sulfur atom in place of the oxygen atom. Their ability to form a stable complex with transition metal is known to enhances the biological activity and reduces the side effects of the parent compound. Thus, this review article describes the inflammatory response mediated by NF-κB-COX-PGs and summarizes the anti-inflammatory activity of different thiosemicarbazones derivatives synthesized in research area.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Prostaglandinas/metabolismo , Tiossemicarbazonas/uso terapêutico
7.
Int J Pharm ; 587: 119647, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32673771

RESUMO

The topical delivery of nanotherapeutics at the injury site for skin regeneration has received increasing attention as a strategy for wound treatment. This study aimed to investigate the preparation of spray dried tadalafil loaded pro-nanoliposomes powder as a novel system to accelerate wound healing process. The optimization was carried out employing 32 factorial design based on phospholipid and cholesterol concentrations. The physicochemical characterizations, in vitro cellular assessment and in vivo performance were evaluated. The results obtained pointed out that phospholipid concentration presented a positive effect on the entrapment efficacy and particle size, while cholesterol hindered the entrapment efficacy yet presented a prominent influence on particle size. Moreover, the optimized formulation showed a sustained release, high zeta potential and uniform spherical particles indicating entrapment of tadalafil in its amorphous state as demonstrated by FTIR and XPRD results. Cell viability and in vitro scratch assay demonstrated no cytotoxicity on human fibroblast cell lines and the ability of the drug and optimized formulation to promote cell migration. In vivo wound healing studies revealed significantly higher wound closure rates for areas treated with optimized loaded-formulation (65.95±6.47%) compared to unloaded formulation (29.78±9.65%), free drug (38.87±11.44%) and sham group (10.22±5.11%). In the in vivo study, histopathological specimens supported the previous results with presentation of cascade of healing elements via the angiogenetic activity of tadalafil. These outcomes provide an insight of a novel and emerging therapeutic drug system for wound treatment in clinical practice.


Assuntos
Portadores de Fármacos , Cicatrização , Humanos , Tamanho da Partícula , Pós , Tadalafila
8.
Curr Pharm Biotechnol ; 20(1): 84-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30727882

RESUMO

BACKGROUND: Propolis is a resinous substance produced by bees and known to possess antioxidant, antimicrobial, antiproliferative and anti-inflammatory activities. OBJECTIVE: This study is aimed at evaluating the in vivo and in vitro anti-inflammatory potential of the Crude Ethanolic Extract (CE) of Lebanese propolis and its Ethyl Acetate Fraction (EAF). METHOD: Chemical content of propolis was characterized using high-performance liquid chromatography and LC-MS/MS. COX-2 and iNOS protein expression, nitric oxide (NO) and prostaglandin (PGE2) release in LPS-activated RAW monocytes were achieved respectively by western blot and spectrophotometry. Antioxidant activity was evaluated by DPPH free radical scavenging assay. Measurement of paw thickness in carrageenan-induced paw edema in mice and pathologic assessment of inflammation in paw sections were used to judge the anti-inflammatory properties of propolis. RESULTS: Pathology analysis revealed in the treated group significant reduction of immune cell infiltration and edema. Both extract and ethyl acetate fraction showed significant anti-inflammatory and antioxidant effects in LPS-treated RAW cells characterized by the inhibition of COX-2 and iNOS protein expression, as well as PGE2 and NO release. Chemical analysis of the crude extract and its ethyl acetate fraction identified 28 different compounds of which two phenolic acids and nine other flavonoids were also quantified. Ferulic acid, caffeic acid, chrysin, galangin, quercetin, and pinocembrin were among the most representative compounds. CONCLUSION: Lebanese propolis is rich in a various amount of flavonoids which showed promising antiinflammatory and antioxidant properties. Additionally, chemical analysis showed unique chemical compositions with the potential of identifying ingredients with interesting anti-inflammatory activities.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/química , Antioxidantes/uso terapêutico , Própole/química , Própole/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Abelhas , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cromatografia Líquida/métodos , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Líbano , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Espectrometria de Massas em Tandem/métodos
9.
Cardiovasc Res ; 115(2): 463-475, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982533

RESUMO

Aims: The term angiogenesis refers to sprouting of new blood vessels from pre-existing ones. The angiogenic process involves cell migration and tubulogenesis requiring interaction between endothelial cells and the extracellular matrix. Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase found embedded in the basement membranes. As it promotes the stabilization of extracellular matrix, we investigated its possible role in angiogenesis both in vitro and in vivo. Methods and results: We analysed the effects of peroxidasin 1 gene silencing and supplementation by recombinant hsPxd01 in TeloHAEC endothelial cells on cell migration, tubulogenesis in matrigel, and intracellular signal transduction as assessed by kinase phosphorylation and expression of pro-angiogenic genes as measured by qRT-PCR. We further evaluated the angiogenic potential of recombinant peroxidasin in a chicken chorioallantoic membrane model. RNA silencing of endogenous hsPxd01 significantly reduced tube formation and cell migration, whereas supplementation by the recombinant peroxidase promoted tube formation in vitro and stimulated vascularization in vivo through its catalytic activity. Moreover, recombinant hsPxd01 promoted phosphorylation of Extracellular signal-Regulated Kinases (ERK1/2), Protein kinase B (Akt), and Focal Adhesion Kinase (FAK), and induced the expression of pro-angiogenic downstream genes: Platelet Derived Growth Factor Subunit B (PDGFB), endothelial-derived Heparin Binding EGF-like growth factor (HB-EGF), CXCL-1, Hairy-Related Transcription Factor 1 (HEY-1), DNA-binding protein inhibitor (ID-2), Snail Family Zinc Finger 1 (SNAI-1), as well as endogenous hsPxd01. However, peroxidasin silencing significantly reduced Akt and FAK phosphorylation but induced ERK1/2 activation after supplementation by recombinant hsPxd01. While hsPxd01 silencing significantly reduced expression of HEY-1, ID-2, and PDGFB, it did not affect expression of SNAI-1, HB-EGF, and CXCL-1 after supplementation by recombinant hsPxd01. Conclusion: Our findings suggest a role of enzymatically active peroxidasin 1 as a pro-angiogenic peroxidase and a modulator of ERK1/2, Akt and FAK signalling.


Assuntos
Células Endoteliais/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica , Peroxidases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Peroxidases/genética , Fosforilação , Transdução de Sinais
10.
Atherosclerosis ; 279: 73-87, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30423477

RESUMO

BACKGROUND AND AIMS: Endothelial cells are main actors in vascular homeostasis as they regulate vascular pressure and permeability as well as hemostasis and inflammation. Disturbed stimuli delivered to and by endothelial cells correlate with the so-called endothelial dysfunction and disrupt this homeostasis. As constituents of the inner layer of blood vessels, endothelial cells are also involved in angiogenesis. Apolipoprotein Ls (APOL) comprise a family of newly discovered apolipoproteins with yet poorly understood function, and are suggested to be involved in inflammatory processes and cell death mechanisms. Here we investigate the role of APOLs in endothelial cells stimulated with factors known to be involved in atherogenesis and their possible contribution to endothelial dysfunction with an emphasis on inflammation driven-angiogenesis in vitro. METHODS: Using the CRISPR/Cas9 technique, we analyzed the effect of APOL3 gene knock out in HMEC-1 endothelial cells on cell migration, tubulogenesis, endothelial permeability, intracellular signal transduction as assessed by kinase phosphorylation, and angiogenesis gene expression (measured by qRT-PCR). RESULTS: Our results indicate that among the family, APOL3 was the only member induced by myeloperoxidase, oxidized LDL, VEGF and FGF treatments. APOL3 invalidation increased endothelial permeability, reduced wound repair and tubule formation in vitro, the latter only in MPO and VEGF-induced conditions. Accordingly, some pro-angiogenic signaling pathways (ERK1/2 and FAK but not Akt) and some pro-angiogenic genes were partially inhibited in APOL3 knock out cells. CONCLUSIONS: These findings suggest the involvement of APOL3 in angiogenesis in vitro and as a modulator of MAPK and FAK signaling in endothelial cells.


Assuntos
Apolipoproteínas L/metabolismo , Células Endoteliais/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Indutores da Angiogênese/farmacologia , Apolipoproteínas L/genética , Aterosclerose/enzimologia , Aterosclerose/patologia , Permeabilidade Capilar , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Inflamação/enzimologia , Inflamação/patologia , Mediadores da Inflamação/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais
11.
Data Brief ; 18: 1160-1171, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900290

RESUMO

This article present data related to the publication entitled "Native and myeloperoxidase-oxidized low-density lipoproteins act in synergy to induce release of resolvin-D1 from endothelial cells" (Dufour et al., 2018). The supporting materials include results obtained by Mox-LDLs stimulated macrophages and investigation performed on scavenger receptors. Linear regressions (RvD1 vs age of mice and RvD1 vs CL-Tyr/Tyr) and Data related to validation were also presented. The interpretation of these data and further extensive insights can be found in Dufour et al. (2018) [1].

12.
Atherosclerosis ; 272: 108-117, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29597117

RESUMO

BACKGROUND AND AIMS: Oxidation of native low-density lipoproteins (LDLs-nat) plays an important role in the development of atherosclerosis. A major player in LDL-nat oxidation is myeloperoxidase (MPO), a heme enzyme present in azurophil granules of neutrophils and monocytes. MPO produces oxidized LDLs called Mox-LDLs, which cause a pro-inflammatory response in human microvascular endothelial cells (HMEC), monocyte/macrophage activation and formation of foam cells. Resolvin D1 (RvD1) is a compound derived from the metabolism of the polyunsaturated fatty acid DHA, which promotes resolution of inflammation at the ng/ml level. METHODS: In the present study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the synthesis of RvD1 and its precursors - 17(S)-hydroxy docosahexaenoic acid (17S-HDHA) and docosahexaenoic acid (DHA) - by HMEC, in the presence of several concentrations of Mox-LDLs, copper-oxidized-LDLs (Ox-LDLs), and native LDLs or in mouse plasma. The LC-MS/MS method has been validated and applied to cell supernatants and plasma to measure production of RvD1 and its precursors in several conditions. RESULTS: Mox-LDLs played a significant role in the synthesis of RvD1 and 17S-HDHA from DHA compared to Ox-LDLs. Moreover, Mox-LDLs and LDLs-nat acted in synergy to produce RvD1. In addition, different correlations were found between RvD1 and M1 macrophages, age of mice or Cl-Tyr/Tyr ratio. CONCLUSIONS: These results suggest that although Mox-LDLs are known to be pro-inflammatory and deleterious in the context of atherosclerosis, they are also able to induce a pro-resolution effect by induction of RvD1 from HMEC. Finally, our data also suggest that HMEC can produce RvD1 on their own.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Células Endoteliais/citologia , Lipoproteínas LDL/sangue , Peroxidase/metabolismo , Animais , Aterosclerose/metabolismo , Calibragem , Linhagem Celular , Cromatografia Líquida , Cobre , Humanos , Inflamação , Limite de Detecção , Lipídeos/sangue , Macrófagos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA