Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 22(8): 3534-3542, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34251178

RESUMO

Typically, quaternary ammonium polymers are employed for antibacterial purposes. However, a century of use has led bacteria to develop resistance to such materials. Therefore, attention is now turning toward other cationic moieties. In this context, the present work explores sulfur-based main-chain cationic polymers. The results indicate that sulfonium polymers with a ß-hydroxy motif do not suffer from structural instability issues as is commonly observed in cationic polythioethers. Furthermore, they can be highly effective toward important Gram-positive bacterial strains such as Mycobacterium smegmatis, a model organism to develop drugs against rapidly spreading tuberculosis infections. More importantly, however, more challenging Gram-negative strains such as Escherichia coli can also be targeted by the polysulfoniums with equal effectiveness. Interestingly, side-chain sulfonium polyelectrolytes are observed to be devoid of any significant antibacterial activity. Finally, a comparison with kanamycin and vancomycin suggests the present polymers to be similarly effective as the bactericidal antibiotic drugs. Overall, these results indicate the effectiveness of the main-chain trivalent ß-hydroxy sulfonium motif for the development of novel antibacterial polymers with a non-ammonium structure.


Assuntos
Compostos de Amônio , Preparações Farmacêuticas , Antibacterianos/farmacologia , Canamicina , Testes de Sensibilidade Microbiana , Polímeros , Sais , Vancomicina
2.
J Am Chem Soc ; 142(7): 3479-3488, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32040308

RESUMO

Proton-transfer photopolymerization through the thiol-epoxy "click" reaction is shown to be a versatile new method for the fabrication of micro- and nanosized polymeric patterns. In this approach, complexation of a guanidine base, diazabicycloundecene (DBU), with benzoylphenylpropionic acid (ketoprofen) generates a photolabile salt. Under illumination at a wavelength of 365 nm, the salt undergoes a photodecarboxylation reaction to release DBU as a base. The base-catalyzed ring opening reaction then creates cross-linked poly(ß-hydroxyl thio-ether) patterns. The surface chemistry of these patterns can be altered through alkylation of the thio-ether linkages. For example, a reaction with bromoacetic acid produces a hitherto unknown sulfonium/carboxylate-based zwitterionic motif that endows antibiofouling capacity to the micropatterns.

3.
Org Biomol Chem ; 18(3): 420-424, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31904038

RESUMO

The aim of this work is to show that by increasing the number of donor substituents in a donor/acceptor system, the sensitivity of the azobenzene linkage towards a reductive cleavage reaction can be enhanced to unprecedented high levels. For instance, in a triple-donor system, less than a second constitutes the half-life of the azo (N[double bond, length as m-dash]N) bond. Synthetic access to such redox active scaffolds is highly practical and requires only 1-2 synthetic steps. The fundamental molecular design is also adaptable. This is demonstrated through scaffold functionalization by azide, tetraethylene glycol, and biotin groups. The availability of the azide group is shown in a copper-free 'click' reaction suitable in context with protein conjugation and proteomics application. Finally, the clean nature of the scission process is demonstrated with the help of liquid chromatography coupled with mass analysis. This work, therefore, describes development of cleavable azobenzene linkers that can be accessed with synthetic ease, can be multiply functionalized, and show a clean and rapid response to mild reducing conditions.

4.
J Am Chem Soc ; 140(21): 6700-6709, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29767509

RESUMO

Proton transfer polymerization between thiol and epoxide groups is shown to be an adaptable and utilitarian method for the synthesis of hydrogels. For instance, the polymerization catalyst can be organic or inorganic, and the polymerization medium can be pure water, buffer solutions, or organic solvents. The gelation mechanism can be triggered at ambient conditions, at a physiological temperature of 37 °C, or through using light as an external stimulus. The ambient and photochemical methods both allow for nanoimprint lithography to produce freestanding patterned thick films. The required thiol- and epoxide-carrying precursors can be chosen from a long list of commercially available small molecular as well as polymeric materials. The water uptake, mechanical, and biodegradation properties of the gels can, therefore, be tuned through the choice of appropriate gelation precursors and polymerization conditions. Finally, the thio-ether groups of the cross-linked networks can be functionalized through a postgelation modification reaction to access sulfonium-based cationic structures. Such structural changes endow antibacterial properties to the networks. In their pristine form, however, the gels are biocompatible and nonadhesive, allowing cancer cells to grow in a cluster formation.

5.
J Am Chem Soc ; 136(16): 5872-5, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24720255

RESUMO

Catalytic action of an enzyme is shown to transform a non-assembling block copolymer, composed of a completely non-natural repeat unit structure, into a self-assembling polymer building block. To achieve this, poly(styrene) is combined with an enzyme-sensitive methacrylate-based polymer segment carrying carefully designed azobenzene side chains. Once exposed to the enzyme azoreductase, in the presence of coenzyme NADPH, the azobenzene linkages undergo a bond scission reaction. This triggers a spontaneous 1,6-self-elimination cascade process and transforms the initially hydrophobic methacrylate polymer segment into a hydrophilic hydroxyethyl methacrylate structure. This change in chemical polarity of one of the polymer blocks confers an amphiphilic character to the diblock copolymer and permits it to self-assemble into a micellar nanostructure in water.


Assuntos
Micelas , NADH NADPH Oxirredutases/metabolismo , Nanoestruturas/química , Poliestirenos/química , Humanos , NADP/metabolismo , Nitrorredutases
6.
Biomacromolecules ; 15(5): 1707-15, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24754338

RESUMO

In this study, we systematically explore the influence of the lipophilic group on the siRNA transfection properties of the polycationic-based delivery vectors. For this, a novel and modular synthetic strategy was developed for the preparation of polymers carrying a cationic site and a lipophilic group at each polymer repeat unit. These bifunctional polymers could form a complex with siRNA and deliver it to human colon carcinoma cells (HT-29-luc). In general, transfection capability increased with an increase in the chain length of the lipophilic moiety. The best transfection agent, a polymer containing ammonium groups and pentyl side chains, exhibited lower toxicity and higher transfection efficiency than branched and linear polyethylenimines (PEI). Moreover, as opposed to PEI, the transfection efficiency of polymer/siRNA complexes remained unchanged in the presence of bafilomycin A1, a proton pump inhibitor, suggesting that the present system did not rely on the "proton sponge" effect for siRNA delivery.


Assuntos
Portadores de Fármacos/química , Polietilenoimina/química , RNA Interferente Pequeno/administração & dosagem , Transfecção/métodos , Portadores de Fármacos/administração & dosagem , Células HT29 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Macrolídeos/farmacologia , Estrutura Molecular , Polietilenoimina/administração & dosagem , RNA Interferente Pequeno/química
7.
Soft Matter ; 10(31): 5755-62, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24979238

RESUMO

Self-assembly of a binary mixture of poly(styrene)336-block-poly(4-vinyl pyridine)25 (PS336-b-P4VP25) and poly(ethylene glycol)113-block-poly(4-hydroxy styrene)25 (PEG113-b-P4HS25) is shown to give rise to a cylindrical morphology in thin films through pyridine/phenol-based hetero-complementary hydrogen bonding interactions between the P4VP and P4HS copolymer segments. Removal of the cylindrical phase (PEG-b-P4HS) allowed access to porous materials having a pore surface decorated with P4VP polymer blocks. These segments could be transformed into cationic polyelectrolytes through quaternization of the pyridine nitrogen atom. The resulting positively charged nanopore surface could recognize negatively charged gold nanoparticles through electrostatic interactions. This work, therefore, outlines the utility of the supramolecular AB/CD type of block copolymer towards preparation of ordered porous thin films carrying a chemically defined channel surface with a large number of reactive sites.

8.
Chem Commun (Camb) ; 60(52): 6591-6602, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38872512

RESUMO

The azo linkage (NN) is one of the very few functional groups in organic chemistry that exhibits sensitivity towards thermal, chemical, photochemical, and biological stimuli. Consequently, this property has given rise to a distinct class of responsive materials. For example, thermal sensitivity has led to generation of free radical initiators useful in curing and polymerization applications. Chemically-induced cleavage has aided the development of self-immolative polymers and reactive scaffolds for proteomics applications. Photo-isomerization capability has given rise to photo-responsive systems. Azobenzene cleavage in biologically reducing environments, such as that of the colon, and under tumor hypoxia conditions has led to diagnostic, therapeutic, and delivery materials. Such conditions have also allowed for control over formation (assembly) and disruption (disassembly) of micellar nanoparticles. The aim of this review article is to look beyond the prevalent photosensitivity aspect of the aromatic azo compounds and draw attention to the azo scission reaction as a trigger of the change in the structure and properties of organic materials. Thus, the main discussion begins with the mechanism of the reductive cleavage. Then, its application in the design of molecules that can be activated as drugs and fluorescent sensors, (nano)materials with potential to release active substances, and polymers with side-chain and main-chain self-immolative capacity is discussed. Finally, the status and future challenges in this field are discussed.

9.
J Am Chem Soc ; 135(38): 14056-9, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24033317

RESUMO

In this study, we investigate the potential of an artificial structural motif, azobenzene, in the preparation of enzyme sensitive polymeric nanostructures. For this purpose, an azobenzene linkage is established at the copolymer junction of an amphiphilic diblock copolymer. This polymer assembles into a micellar structure in water. Treatment with the enzyme azoreductase, in the presence of coenzyme NADPH, results in the cleavage of the azo-based copolymer junction and disruption of the micellar assembly. These results suggest that azobenezene is a useful non-natural structural motif for the preparation of enzyme responsive polymer nanoparticles. Due to the presence of azoreductase in the human intestine, such nanomaterials are anticipated to find applicability in the arena of colon-specific delivery systems.


Assuntos
Compostos Azo/química , NADH NADPH Oxirredutases/química , Polietilenoglicóis/química , Poliestirenos/química , Micelas , NAD/química , Nitrorredutases
10.
Chem Commun (Camb) ; 59(74): 11028-11044, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37642518

RESUMO

Base-catalyzed ring-opening reaction of epoxides with the thiol nucleophiles is useful in the preparation and post-polymerization modification of synthetic polymers. Due to its many beneficial characteristics, this process is referred to as the thiol-epoxy 'click' reaction. In this article, our aim is to discuss the fundamental attributes of this process by tracing our own steps in the field. We initially address the aspects of efficiency, regio-selectivity, stoichiometry, and reaction conditions with the help of linear, hyperbranched, graft, dendritic, and cross-linked poly(ß-hydroxy thioether)s. A special emphasis is placed on hydrogel synthesis and photopolymerization on surfaces. Subsequently, quenching of the alkoxide anion is considered which is a critical step in the formation of the ß-hydroxy thioether linkage upon completion of reaction. The amenability of further reaction on the hydroxy and thioether groups through esterification and sulfur alkylation is then discussed. Initially, post-gelation/fabrication modification of sulfide linkages is considered to obtain cationic sulfonium hydrogels and zwitterionic photopatterned networks with antibacterial and antibiofouling properties, respectively. A post-synthesis functionalization strategy is then described to access same centered and segregated main-chain poly(ß-hydroxy sulfonium)s as potent antibacterial materials. In side-chain polysulfides, the sequential post-synthesis modifications involving poly(glycidyl methacrylate) scaffolds can lead to the formation of amphiphilic homopolymers. The application of such materials is discussed in the arena of siRNA delivery. Finally, concerns relating to the formation of disulfide defects and open research goals such as study of the orthogonality of the reaction are addressed.

11.
J Am Chem Soc ; 134(41): 17291-7, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23025462

RESUMO

Poly(ß-hydroxyl amine)s are prepared from readily available small molecular building blocks at ambient conditions. These macromolecules can be transformed into main-chain cationic polymers upon quaternization of the backbone amine units. The modular and mild nature of the synthesis allows for incorporation of multiple (2-4) chemically distinct reactive sites in the polymer chain. Modifications of the reactive sites afford multifunctional polymers with tunable properties. The orthogonal nature of the involved chemistries sets the synthetic pathway free from any functional group protection/deprotection requirements. This feature also allows for alteration of the modification sequence.


Assuntos
Poliaminas/síntese química , Cátions/síntese química , Cátions/química , Química Click , Estrutura Molecular , Poliaminas/química
12.
RSC Adv ; 12(45): 29423-29432, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320766

RESUMO

Nanogels are very promising carriers for nanomedicine, as they can be prepared in the favorable nanometer size regime, can be functionalized with targeting agents and are responsive to stimuli, i.e. temperature and pH. This induces shrinking or swelling, resulting in controlled release of a therapeutic cargo. Our interest lies in the controlled synthesis of functional nanogels, such as those containing epoxide moieties, that can be subsequently functionalized. Co-polymerization of glycidyl methacrylate and a bifunctional methacrylate crosslinker under dilute conditions gives rise to well-defined epoxide-functional nanogels, of which the sizes are controlled by the degree of polymerization. Nanogels with well-defined sizes (polydispersity of 0.2) ranging from 38 nm to 95 nm were prepared by means of controlled radical polymerization. The nanogels were characterized in detail by FT-IR, DLS, size exclusion chromatography, NMR spectroscopy, AFM and TEM. Nucleophilic attack with functional thiols or amines on the least hindered carbon of the epoxide provides water-soluble nanogels, without altering the backbone structure, while reaction with sodium azide provides handles for further functionalization via click chemistry.

13.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372061

RESUMO

The aim of this work is to demonstrate that the alkylation and dealkylation of selenium atoms is an effective tool in controlling polymer amphiphilicity and, hence, its assembly and disassembly process in water. To establish this concept, poly(ethylene glycol)-block-poly(glycidyl methacrylate) was prepared. A post-synthesis modification with phenyl selenolate through a base-catalyzed selenium-epoxy 'click' reaction then gave rise to the side-chain selenium-containing block copolymer with an amphiphilic character. This polymer assembled into micellar structures in water. However, silver tetrafluoroborate-promoted alkylation of the selenium atoms resulted in the formation of hydrophilic selenonium tetrafluoroborate salts. This enhancement in the chemical polarity of the second polymer block removed the amphiphilic character from the polymer chain and led to the disassembly of the micellar structures. This process could be reversed by restoring the original amphiphilic polymer character through the dealkylation of the cations.

14.
Chem Sci ; 12(13): 4949-4957, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34163742

RESUMO

Fullerenes have unique structural and electronic properties that make them attractive candidates for diagnostic, therapeutic, and theranostic applications. However, their poor water solubility remains a limiting factor in realizing their full biomedical potential. Here, we present an approach based on a combination of supramolecular and covalent chemistry to access well-defined fullerene-containing polymer nanoparticles with a core-shell structure. In this approach, solvophobic forces and aromatic interactions first come into play to afford a micellar structure with a poly(ethylene glycol) shell and a corannulene-based fullerene-rich core. Covalent stabilization of the supramolecular assembly then affords core-crosslinked polymer nanoparticles. The shell makes these nanoparticles biocompatible and allows them to be dried to a solid and redispersed in water without inducing interparticle aggregation. The core allows a high content of different fullerene types to be encapsulated. Finally, covalent stabilization endows nanostructures with stability against changing environmental conditions.

15.
Polymers (Basel) ; 12(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202976

RESUMO

Atom transfer radical polymerization of glycidyl methacrylate monomer with poly(ethylene glycol)-based macroinitiators leads to the formation of reactive block copolymers. The epoxide side-chains of these polymers can be subjected to a regiospecific base-catalyzed nucleophilic ring-opening reaction with benzeneselenol under ambient conditions. The ß-hydroxy selenide linkages thus formed can be alkylated to access polyselenonium salts. 77Se-NMR indicates the formation of diastereomers upon alkylation. In such a manner, sequential post-polymerization modifications of poly(glycidyl methacrylate) scaffolds via selenium-epoxy and selenoether alkylation reactions furnish practical access to poly(ethylene glycol)-based cationic organoselenium copolymers.

16.
Chem Commun (Camb) ; 56(91): 14271-14274, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33124621

RESUMO

With the help of amphiphilic homopolymers, this work explores three new avenues in polymer chemistry: (i) the 'click' nature of the selenium-epoxy reaction, (ii) alkylation of the seleno-ethers as a means to prepare cationic polyelectrolytes, and (iii) the antibacterial activity of polyselenonium salts.

17.
Chem Commun (Camb) ; 56(54): 7419-7422, 2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32490481

RESUMO

The base-catalyzed oxirane ring opening reaction with thiol nucleophiles is frequently employed for post-polymerization modification of polymeric glycidyl scaffolds. Due to various beneficial attributes, it is often referred to as a 'click' reaction. However, the tendency of the free thiol molecules to undergo oxidative dimerization through the formation of a disulfide bond under ambient conditions results in partial consumption of the sulfhydryl precursors. Therefore, an excess of the thiol precursors is typically used to counterbalance the side-reaction. This violates the equimolar stoichiometry conditions required for 'click' reactions in the context of polymer synthesis. Here, we show that commercially available disulfides can be used to generate the necessary thiolate nucleophiles in situ through the reduction of the SS-bond with sodium borohydride. Such activation strategy eliminates the sulfhydryl oxidation mechanism to disulfides and ensures that the post-synthesis functionalization of epoxy polymers can be performed under equimolar 'click' conditions.

18.
RSC Adv ; 10(45): 26752-26755, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515796

RESUMO

Poly(ß-hydroxyl amine)s are prepared through an amine-epoxy 'click' polymerization process in water under ambient conditions. These materials could be subjected to a post-polymerization protonation/alkylation reaction at the nitrogen atom to yield quaternary ammonium salts in the polymer backbone. The antimicrobial activities indicated that polymers carrying butyl chains at the nitrogen atom are effective towards Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as only 10-20 µg mL-1 polymer concentrations are required to inhibit the bacterial growth by >90%. One of the candidates was also found to be effective towards Mycobacterium smegmatis (M. smegmatis) - a model organism to develop drugs against rapidly spreading tuberculosis (TB) infections. The hemolysis assay indicated that a majority of antimicrobial agents did not disrupt red blood cell membranes. The mechanistic studies suggested that cell wall disruption by the cationic polymers was the likely cause of bacterial death.

19.
RSC Adv ; 10(4): 2359-2363, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35494601

RESUMO

Polyvinylcyclopropanes are an old class of polymers typically known for their low polymerization-induced shrinkage properties. In this work, we show that they are capable of exhibiting a thermally triggered aggregation process in aqueous solutions. The phase transition is sharp, tunable within the temperature range of 25-46 °C, and relatively insensitive to environmental conditions. It is anticipated that this preliminary study will shine new light on polyvinylcyclopropanes and lead to new avenues in their studies and future application.

20.
Chem Commun (Camb) ; (4): 425-7, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19137173

RESUMO

A series of dendritic macromonomers have been synthesized and utilized as the photoactive component in holographic storage systems leading to high performance, low shrinkage materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA