RESUMO
Many severe epidemics and pandemics have hit human civilizations throughout history. The recent Sever Actuate Respiratory disease SARS-CoV-2 known as COVID-19 became a global disease and is still growing around the globe. It has severely affected the world's economy and ways of life. It necessitates predicting the spread in advance and considering various control policies to avoid the country's complete closure. In this paper, we propose deep learning-based stacked Bi-directional long short-term memory (Stacked Bi-LSTM) network that forecasts COVID-19 more accurately for the country of South Korea. The paper's main objectives are to present a lightweight, accurate, and optimized model to predict the spread considering restriction policies such as school closure, workspace closing, and the canceling of public events. Based on the fourteen parameters (including control policies), we predict and forecast the future value of the number of positive, dead, recovered, and quarantined cases. In this paper, we use the dataset of South Korea comprised of several control policies implemented for minimizing the spread of COVID-19. We compare the performance of the stacked Bi-LSTM with the traditional time-series models and LSTM model using the performance metrics mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). Moreover, we study the impact of control policies on forecasting accuracy. We further study the impact of changing the Bi-LSTM default activation functions Tanh with ReLU on forecasting accuracy. The research provides insight to policymakers to optimize the pooling of resources more optimally on the correct date and time prior to the event and to control the spread by employing various strategies in the meantime.
RESUMO
In this work, we propose a new mathematical modeling of the spread of COVID-19 infection in an arbitrary population, by modifying the SIQRD model as m-SIQRD model, while taking into consideration the eight governmental interventions such as cancellation of events, closure of public places etc., as well as the influence of the asymptomatic cases on the states of the model. We introduce robustness and improved accuracy in predictions of these models by utilizing a novel deep learning scheme. This scheme comprises of attention based architecture, alongside with Generative Adversarial Network (GAN) based data augmentation, for robust estimation of time varying parameters of m-SIQRD model. In this regard, we also utilized a novel feature extraction methodology by employing noise removal operation by Spline interpolation and Savitzky-Golay filter, followed by Principal Component Analysis (PCA). These parameters are later directed towards two main tasks: forecasting of states to the next 15 days, and estimation of best policy encodings to control the infected and deceased number within the framework of data driven synergetic control theory. We validated the superiority of the forecasting performance of the proposed scheme over countries of South Korea and Germany and compared this performance with 7 benchmark forecasting models. We also showed the potential of this scheme to determine best policy encodings in South Korea for 15 day forecast horizon.