Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813334

RESUMO

A proximity warning system to detect the presence of a worker/workers and to warn heavy equipment operators is highly needed to prevent collision accidents at construction sites. In this paper, we developed a robust construction safety system (RCSS), which can activate warning devices and automatically halt heavy equipment, simultaneously, to prevent possible collision accidents. The proximity detection of this proposed system mainly relies on ultra-wideband (UWB) sensing technologies, which enable instantaneous and simultaneous alarms on (a) a worker's personal safety (personal protection unit (PPU)) device and (b) hazard area device (zone alert unit (ZAU)). This system also communicates with electronic control sensors (ECSs) installed on the heavy equipment to stop its maneuvering. Moreover, the RCSS has been interfaced with a global positioning system communication unit (GCU) to acquire real-time information of construction site resources and warning events. This enables effective management of construction site resources using an online user interface. The performance and effectiveness of the RCSS have been validated at laboratory scale as well as at real field (construction site and steel factory). Conclusively, the RCSS can significantly enhance construction site safety by pro-actively preventing collision of a worker/workers with heavy equipment.

2.
Sensors (Basel) ; 18(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561777

RESUMO

The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH4, CO, SO2, and H2S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R² and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.

3.
Sensors (Basel) ; 18(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518124

RESUMO

The Internet-of-things (IoT) and blockchain are growing realities of modern society, and both are rapidly transforming civilization, either separately or in combination. However, the leverage of both technologies for structural health monitoring (SHM) to enable transparent information sharing among involved parties and autonomous decision making has not yet been achieved. Therefore, this study combines IoT with blockchain-based smart contracts for SHM of underground structures to define a novel, efficient, scalable, and secure distributed network for enhancing operational safety. In this blockchain-IoT network, the characteristics of locally centralized and globally decentralized distribution have been activated by dividing them into core and edge networks. This division enhances the efficiency and scalability of the system. The proposed system was effective in simulation for autonomous monitoring and control of structures. After proper design, the decentralized blockchain networks may effectively be deployed for transparent and efficient information sharing, smart contracts-based autonomous decision making, and data security in SHM.


Assuntos
Segurança Computacional , Tomada de Decisões , Internet , Humanos , Disseminação de Informação
4.
Sensors (Basel) ; 18(6)2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29882904

RESUMO

Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.

5.
Heliyon ; 10(17): e36841, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281494

RESUMO

The design of masonry structures requires accurate estimation of compressive strength (CS) of hollow concrete masonry prisms. Generally, the CS of masonry prisms is determined by destructive laboratory testing which results in time and resource wastage. Thus, this study aims to provide machine learning-based predictive models for CS of hollow concrete masonry blocks using different algorithms including Multi Expression Programming (MEP), Random Forest Regression (RFR), and Extreme Gradient Boosting (XGB) etc. A dataset of 159 experimental results was collected from published literature for this purpose. The collected dataset consisted of four input parameters including strength of masonry units ( f b ), height-to-thickness ratio (h/t), strength of mortar ( f m ), and ratio of f m / f b and only one output parameter i.e., CS. Out of all the algorithms employed in current study, only MEP and GEP expressed their output in the form of an empirical equation. The accuracy of developed models was assessed using root mean squared error (RMSE), objective function (OF), and R 2 etc. Among all algorithms assessed, XGB turned out to be the most accurate having R 2  = 0.99 and least OF value of 0.0063 followed by AdaBoost, RFR, and other algorithms. The developed XGB model was also used to conduct different explainable artificial intelligence (XAI) analysis including sensitivity and shapley analysis and the results showed that strength of masonry unit ( f b ) is the most significant variable in predicting CS. Thus, the ML-based predictive models presented in this study can be utilized practically for determining CS of hollow concrete masonry prisms without requiring expensive and time-consuming laboratory testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA