Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298168

RESUMO

In this paper, a defused decision boundary which renders misclassification issues due to the presence of cross-pairs is investigated. Cross-pairs retain cumulative attributes of both classes and misguide the classifier due to the defused data samples' nature. To tackle the problem of the defused data, a Tomek Links technique targets the cross-pair majority class and is removed, which results in an affine-segregated decision boundary. In order to cope with a Theft Case scenario, theft data is ascertained and synthesized randomly by using six theft data variants. Theft data variants are benign class appertaining data samples which are modified and manipulated to synthesize malicious samples. Furthermore, a K-means minority oversampling technique is used to tackle the class imbalance issue. In addition, to enhance the detection of the classifier, abstract features are engineered using a stochastic feature engineering mechanism. Moreover, to carry out affine training of the model, balanced data are inputted in order to mitigate class imbalance issues. An integrated hybrid model consisting of Bi-Directional Gated Recurrent Units and Bi-Directional Long-Term Short-Term Memory classifies the consumers, efficiently. Afterwards, robustness performance of the model is verified using an attack vector which is subjected to intervene in the model's efficiency and integrity. However, the proposed model performs efficiently on such unseen attack vectors.


Assuntos
Eletricidade , Roubo , Eletrodos
2.
Heliyon ; 10(15): e35776, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170386

RESUMO

The power system incorporates renewable energy resources into the main utility grid, which possesses low or no inertia, and these systems generate harmonics due to the utilization of power electronic equipment. The precise and effective assessment of harmonic characteristics is necessary for maintaining power quality in distributed power systems. In this paper, the Marine Predator Algorithm (MPA) that mimics the hunting behavior of predators is exploited for harmonics estimation. The MPA utilizes the concepts of Levy and Brownian motions to replicate the movement of predators as they search for prey. The identification model for parameter estimation of harmonics is presented, and an objective function is developed that minimizes the difference between the real and predicted harmonic signals. The efficacy of the MPA is assessed for different levels of noise, population sizes, and iterations. Further, the comparison of the MPA is conducted with a recent metaheuristic of the Reptile Search Algorithm (RSA). The statistical analyses through sufficient autonomous executions established the accurate, stable, reliable and robust behavior of MPA for all variations. The substantial enhancement in estimation accuracy indicates that MPA holds great potential as a strategy for estimating harmonic parameters in distributed power systems.

3.
Med Image Anal ; 99: 103307, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39303447

RESUMO

Automatic analysis of colonoscopy images has been an active field of research motivated by the importance of early detection of precancerous polyps. However, detecting polyps during the live examination can be challenging due to various factors such as variation of skills and experience among the endoscopists, lack of attentiveness, and fatigue leading to a high polyp miss-rate. Therefore, there is a need for an automated system that can flag missed polyps during the examination and improve patient care. Deep learning has emerged as a promising solution to this challenge as it can assist endoscopists in detecting and classifying overlooked polyps and abnormalities in real time, improving the accuracy of diagnosis and enhancing treatment. In addition to the algorithm's accuracy, transparency and interpretability are crucial to explaining the whys and hows of the algorithm's prediction. Further, conclusions based on incorrect decisions may be fatal, especially in medicine. Despite these pitfalls, most algorithms are developed in private data, closed source, or proprietary software, and methods lack reproducibility. Therefore, to promote the development of efficient and transparent methods, we have organized the "Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image Segmentation (MedAI 2021)" competitions. The Medico 2020 challenge received submissions from 17 teams, while the MedAI 2021 challenge also gathered submissions from another 17 distinct teams in the following year. We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic. Our analysis revealed that the participants improved dice coefficient metrics from 0.8607 in 2020 to 0.8993 in 2021 despite adding diverse and challenging frames (containing irregular, smaller, sessile, or flat polyps), which are frequently missed during a routine clinical examination. For the instrument segmentation task, the best team obtained a mean Intersection over union metric of 0.9364. For the transparency task, a multi-disciplinary team, including expert gastroenterologists, accessed each submission and evaluated the team based on open-source practices, failure case analysis, ablation studies, usability and understandability of evaluations to gain a deeper understanding of the models' credibility for clinical deployment. The best team obtained a final transparency score of 21 out of 25. Through the comprehensive analysis of the challenge, we not only highlight the advancements in polyp and surgical instrument segmentation but also encourage subjective evaluation for building more transparent and understandable AI-based colonoscopy systems. Moreover, we discuss the need for multi-center and out-of-distribution testing to address the current limitations of the methods to reduce the cancer burden and improve patient care.

4.
PeerJ Comput Sci ; 9: e1685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192480

RESUMO

Gastrointestinal (GI) endoscopy is an active research field due to the lethal cancer diseases in the GI tract. Cancer treatments result better if diagnosed early and it increases the survival chances. There is a high miss rate in the detection of the abnormalities in the GI tract during endoscopy or colonoscopy due to the lack of attentiveness, tiring procedures, or the lack of required training. The procedure of the detection can be automated to the reduction of the risks by identifying and flagging the suspicious frames. A suspicious frame may have some of the abnormality or the information about anatomical landmark in the frame. The frame then can be analysed for the anatomical landmarks and the abnormalities for the detection of disease. In this research, a real-time endoscopic abnormalities detection system is presented that detects the abnormalities and the landmarks. The proposed system is based on a combination of handcrafted and deep features. Deep features are extracted from lightweight MobileNet convolutional neural network (CNN) architecture. There are some of the classes with a small inter-class difference and a higher intra-class differences, for such classes the same detection threshold is unable to distinguish. The threshold of such classes is learned from the training data using genetic algorithm. The system is evaluated on various benchmark datasets and resulted in an accuracy of 0.99 with the F1-score of 0.91 and Matthews correlation coefficient (MCC) of 0.91 on Kvasir datasets and F1-score of 0.93 on the dataset of DowPK. The system detects abnormalities in real-time with the detection speed of 41 frames per second.

5.
Biomimetics (Basel) ; 8(2)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37092393

RESUMO

In this article, a chaotic computing paradigm is investigated for the parameter estimation of the autoregressive exogenous (ARX) model by exploiting the optimization knacks of an improved chaotic grey wolf optimizer (ICGWO). The identification problem is formulated by defining a mean square error-based fitness function between true and estimated responses of the ARX system. The decision parameters of the ARX model are calculated by ICGWO for various populations, generations, and noise levels. The comparative performance analyses with standard counterparts indicate the worth of the ICGWO for ARX model identification, while the statistical analyses endorse the efficacy of the proposed chaotic scheme in terms of accuracy, robustness, and reliability.

6.
Med Image Anal ; 70: 102007, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740740

RESUMO

Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.


Assuntos
Endoscopia Gastrointestinal , Endoscopia , Diagnóstico por Imagem , Humanos
7.
Med Chem ; 11(7): 687-700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741881

RESUMO

OBJECTIVE: Drug resistance from affordable drugs has increased the number of deaths from malaria globally. This problem has raised the requirement to design new drugs against multidrug-resistant Plasmodium falciparum parasite. METHODS: In the current project, we have focused on four important proteins of Plasmodium falciparum and used them as receptors against a dataset of four anti-malarial drugs. In silico analysis of these receptors and ligand dataset was carried out using Autodock 4.2. A pharmacophore model was also established using Ligandscout. RESULTS: Analysis of docking experiments showed that all ligands bind efficiently to four proteins of Plasmodium falciparum. We have used ligand-based pharmacophore modeling and developed a pharmacophore model that has three hydrophobic regions, two aromatic rings, one hydrogen acceptor and one hydrogen donor. Using this pharmacophore model, we have screened a library of 50,000 compounds. The compounds that shared features of our pharmacophore model and exhibited interactions with the four proteins of our receptors dataset are short-listed. CONCLUSION: As there is a need of more anti-malarial drugs, therefore, this research will be helpful in identifying novel anti-malarial drugs that exhibited bindings with four important proteins of Plasmodium falciparum. The hits obtained in this study can be considered as useful leads in anti-malarial drug discovery.


Assuntos
Antimaláricos/metabolismo , Antimaláricos/farmacologia , Simulação de Acoplamento Molecular , Antimaláricos/química , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Humanos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Interface Usuário-Computador
8.
Artigo em Inglês | IMSEAR | ID: sea-165893

RESUMO

Background: Lecture is a widely accepted method of teaching & learning. It provides more of surface learning and covers larger text in specified time. However it has a disadvantage that there is no assessment about the extent of knowledge learner receives. Hence, we designed a daily questionnaire based evaluation technique. Methods: Without disclosing the topic, second year MBBS students (mean n=23) after learning from lecture series in Pharmacology, participated voluntarily to a questionnaire based task on eight therapeutic lecture topics. They wrote answers separately in 5-10 minutes before, and after delivery of text without referring to notes i. e. pre-test & post-test. Papers were valued on score basis, data recorded, interpreted and analyzed. Results: Mean acceptability (81.4%), mean improvement (94%), mean collective maximum score (96%), mean individual maximum score (92%) were observed. 85-100% participants out of total 184 in eight therapeutic lecture topics passed in post-test (None passing in Pre-test) reflected good improvement in cognitive structure. Conclusion: Performance in such tests provides feedback on teaching effectiveness, specificity & adequacy of knowledge gained by learners.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA