RESUMO
Polyvinyl chloride (PVC) is the third most produced synthetic plastic and releases the most harmful and lethal environmental component after incineration and landfilling. Few studies on microbial degradation of PVC have been reported but very little knowledge about the enzymes. In the present study, esterase enzyme was isolated and partially purified from marine bacterial isolates (T-1.3, BP-4.3 and S-237 identified as Vibrio sp., Alteromonas sp., and Cobetia sp., respectively) having the capability of PVC degradation. Initially, a plate assay was carried out for testing esterase production by studying bacteria using 1-naphthyl acetate as substrate. Enzyme assay showed higher production of esterase i.e. 0.57 U mL-1 (2nd day), 0.46 U mL-1 (2nd day) and 0.55 U mL-1 (5th day) by bacterial isolate Vibrio sp., Alteromonas sp. and Cobetia sp., respectively incubated with PVC. Other enzymes like lipase, laccase and manganese peroxidase were much less or negligible compared to esterase enzyme production. Sephadex G-50 column purification had shown 58.62, 42.35 and 223.70 units mg-1 of a specific activity by esterase for bacterial isolates Vibrio sp., Alteromonas sp. and Cobetia sp., respectively. Further, Sephadex G-50 column purification removed all the contamination and gave a clear appearance of the band at 38, 20 and 20 KD for bacterial isolates Vibrio sp., Alteromonas sp., and Cobetia sp., respectively. Esterase has shown maximum stability at a range of pH between 6.0 to 7.5, temperature between 30 to 35 °C and salinity concentration between 3 to 3.5 M for all bacterial isolates. In conclusion, esterase enzyme has promising potential to degrade PVC which can contribute to the decline the plastic pollution in an eco-friendly manner from the environment.
Assuntos
Bactérias , Biodegradação Ambiental , Esterases , Cloreto de Polivinila , Cloreto de Polivinila/química , Esterases/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Vibrio/enzimologia , Concentração de Íons de Hidrogênio , Proteínas de Bactérias/metabolismo , TemperaturaRESUMO
Polyethylene has considered as non-degradable for decades, and their degradation through marine bacteria has rarely studied. However, LDPE found a significant source of pollution in the marine environment. In the present study, four bacterial strains capable of biodegradation of LDPE were isolated from the marine environment. These bacterial isolates H-237, H-255, H-256 and H-265 were revealed close similarity with Cobetia sp., Halomonas sp., Exigobacterium sp. and Alcanivorax sp., respectively based on 16S rRNA gene sequencing method. These bacterial isolates were individually incubated for 90 days supplied with LDPE films as a carbon source using the Bushnell-Haas medium. During the biodegradation assay, bacterial isolates were formed the viable biofilm on the LDPE surface, which decreased the thermal stability of the films. At the end of the incubation study, a maximum weight loss of 1.72% of LDPE film was observed by the bacterial isolate H-255. The bacterial attachment on the film changed the physical structure (surface erosion, roughness and degradation) which were confirmed by field emission scanning electron microscopy and atomic force microscopy. The changes in the chemical structure of the LDPE film were analyzed by Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). This ATR-FTIR showed the shifting of peaks of C-H stretch and C=C bond stretching and the new peaks formation of C-O and -C=C- bonds in comparison to control LDPE film. Further, biodegradation of LDPE film was also confirmed by remineralization of carbon and enzymatic activities. This study revealed that the active biodegradation of LDPE film by marine bacteria and these bacteria could reduce plastic pollution in the marine environment.
Assuntos
Plásticos , Polietileno , Bactérias/genética , Biodegradação Ambiental , RNA Ribossômico 16S/genéticaRESUMO
Biodegradation of polyvinyl chloride (PVC) by marine bacteria is a sustainable approach that leads to the production of different by-products but their toxicity needs to be evaluated. In the present study, polyvinyl chloride degradation products (PVCDP) produced by three marine bacterial isolates (T-1.3, BP-4.3 and S-237) in the culture supernatant were evaluated for toxicity on the germination of Vigna radiata and growth of Ulva lactuca. A total of 24 compounds comprising of benzene, fatty acid, ether, ester and plastic stabilizer (tris (2, 4-di-tert-butylphenyl) phosphate) were identified by GC-MS using diethyl ether solvent extraction from the supernatant. The per cent germination rate of the seed treated with PVCDP showed no significant effect but germination index and elongation inhibition rate were influenced significantly by PVCDP treatments. In seaweed (U. lactuca), PVCDP showed improvement in the daily growth rate. After ten days of treatment with PVCDP, pigment contents were improved in seaweed and PVCDP (2%) of isolate T-1.3 recorded the highest chlorophyll-a and chlorophyll-b.
Assuntos
Alga Marinha , Ulva , Vigna , Bactérias , Cloreto de PolivinilaRESUMO
Polyvinyl chloride (PVC) is the third one after polyethylene and polypropylene in the production demand. It intends to grow further, causing an increase in the risk of health and ecological problems due to environmental accumulation and incineration. In the present study, we determined the biodegradative abilities of marine bacteria for PVC. Three potential marine bacterial isolates, T-1.3, BP-4.3 and S-237 (Vibrio, Altermonas and Cobetia, respectively) were identified after preliminary screening. They led to active biofilm formation, viability and protein formation on the PVC surface. The highest weight loss (1.76%) of PVC films was exhibited by BP-4.3 isolate after 60 days of incubation. Remineralization of PVC film was confirmed by CO2 assimilation assay. Change in surface topography was confirmed by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The functional group peak intensity was decreased for the terminal chlorine group at the region 1000-1300 cm-1, which indicated the dechlorination. Thermogravimetric, tensile strength and contact angle analysis showed a decline in the mechanical properties and a rise in PVC film's hydrophilic nature after biodegradation. These results demonstrated promising evidence of PVC degradation by marine bacteria.