Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Gastroenterology ; 163(4): 1064-1078.e10, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788346

RESUMO

BACKGROUND & AIMS: Epidemiological studies have established alcohol and smoking as independent risk factors for recurrent acute pancreatitis and chronic pancreatitis. However, the molecular players responsible for the progressive loss of pancreatic parenchyma and fibroinflammatory response are poorly characterized. METHODS: Tandem mass tag-based proteomic and bioinformatics analyses were performed on the pancreata of mice exposed to alcohol, cigarette smoke, or a combination of alcohol and cigarette smoke. Biochemical, immunohistochemistry, and transcriptome analyses were performed on the pancreatic tissues and primary acinar cells treated with cerulein in combination with ethanol (50 mmol/L) and cigarette smoke extract (40 µg/mL) for the mechanistic studies. RESULTS: A unique alteration in the pancreatic proteome was observed in mice exposed chronically to the combination of alcohol and cigarette smoke (56.5%) compared with cigarette smoke (21%) or alcohol (17%) alone. The formation of toxic metabolites (P < .001) and attenuated unfolded protein response (P < .04) were the significantly altered pathways on combined exposure. The extracellular matrix (ECM) proteins showed stable malondialdehyde-acetaldehyde (MAA) adducts in the pancreata of the combination group and chronic pancreatitis patients with a history of smoking and alcohol consumption. Interestingly, MAA-ECM adducts significantly suppressed expression of X-box-binding protein-1, leading to acinar cell death in the presence of alcohol and smoking. The stable MAA-ECM adducts persist even after alcohol and smoking cessation, and significantly delay pancreatic regeneration by abrogating the expression of cyclin-dependent kinases (CDK7 and CDK5) and regeneration markers. CONCLUSIONS: The combined alcohol and smoking generate stable MAA-ECM adducts that increase endoplasmic reticulum stress and acinar cell death due to attenuated unfolded protein response and suppress expression of cell cycle regulators. Targeting aldehyde adducts might provide a novel therapeutic strategy for the management of recurrent acute pancreatitis and chronic pancreatitis.


Assuntos
Acetaldeído , Pancreatite Crônica , Acetaldeído/metabolismo , Doença Aguda , Aldeídos , Animais , Ceruletídeo , Quinases Ciclina-Dependentes/metabolismo , Etanol/toxicidade , Proteínas da Matriz Extracelular/metabolismo , Malondialdeído/metabolismo , Camundongos , Proteoma/metabolismo , Proteômica , Fumar/efeitos adversos , Resposta a Proteínas não Dobradas
2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982417

RESUMO

Liver disease is one of the leading comorbidities in HIV infection. The risk of liver fibrosis development is potentiated by alcohol abuse. In our previous studies, we reported that hepatocytes exposed to HIV and acetaldehyde undergo significant apoptosis, and the engulfment of apoptotic bodies (ABs) by hepatic stellate cells (HSC) potentiates their pro-fibrotic activation. However, in addition to hepatocytes, under the same conditions, ABs can be generated from liver-infiltrating immune cells. The goal of this study is to explore whether lymphocyte-derived ABs trigger HSC profibrotic activation as strongly as hepatocyte-derived ABs. ABs were generated from Huh7.5-CYP2E1 (RLW) cells and Jurkat cells treated with HIV+acetaldehyde and co-culture with HSC to induce their pro-fibrotic activation. ABs cargo was analyzed by proteomics. ABs generated from RLW, but not from Jurkat cells activated fibrogenic genes in HSC. This was driven by the expression of hepatocyte-specific proteins in ABs cargo. One of these proteins is Hepatocyte-Derived Growth Factor, for which suppression attenuates pro-fibrotic activation of HSC. In mice humanized with only immune cells but not human hepatocytes, infected with HIV and fed ethanol, liver fibrosis was not observed. We conclude that HIV+ABs of hepatocyte origin promote HSC activation, which potentially may lead to liver fibrosis progression.


Assuntos
Vesículas Extracelulares , Infecções por HIV , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Etanol/metabolismo , Infecções por HIV/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Acetaldeído/metabolismo , Vesículas Extracelulares/metabolismo
3.
Am J Pathol ; 191(10): 1732-1742, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34186073

RESUMO

Alcohol misuse and smoking are risk factors for pneumonia, yet the impact of combined cigarette smoke and alcohol on pneumonia remains understudied. Smokers who misuse alcohol form lung malondialdehyde-acetaldehyde (MAA) protein adducts and have decreased levels of anti-MAA secretory IgA (sIgA). Transforming growth factor-ß (TGF-ß) down-regulates polymeric Ig receptor (pIgR) on mucosal epithelium, resulting in decreased sIgA transcytosis to the mucosa. It is hypothesized that MAA-adducted lung protein increases TGF-ß, preventing expression of epithelial cell pIgR and decreasing sIgA. Cigarette smoke and alcohol co-exposure on sIgA and TGF-ß in human bronchoalveolar lavage fluid and in mice instilled with MAA-adducted surfactant protein D (SPD-MAA) were studied herein. Human bronchial epithelial cells (HBECs) and mouse tracheal epithelial cells were treated with SPD-MAA and sIgA and TGF-ß was measured. Decreased sIgA and increased TGF-ß were observed in bronchoalveolar lavage from combined alcohol and smoking groups in humans and mice. CD204 (MAA receptor) knockout mice showed no changes in sIgA. SPD-MAA decreased pIgR in HBECs. Conversely, SPD-MAA stimulated TGF-ß release in both HBECs and mouse tracheal epithelial cells, but not in CD204 knockout mice. SPD-MAA stimulated TGF-ß in alveolar macrophage cells. These data show that MAA-adducted surfactant protein stimulates lung epithelial cell TGF-ß, down-regulates pIgR, and decreases sIgA transcytosis. These data provide a mechanism for the decreased levels of sIgA observed in smokers who misuse alcohol.


Assuntos
Acetaldeído/metabolismo , Alcoolismo/complicações , Epitélio/metabolismo , Imunoglobulina A/metabolismo , Pulmão/metabolismo , Malondialdeído/metabolismo , Fumantes , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Etanol , Humanos , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Fumar/efeitos adversos , Transcitose , Fator de Crescimento Transformador beta/metabolismo
4.
Alcohol Clin Exp Res ; 46(12): 2149-2159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316764

RESUMO

Unhealthy alcohol consumption is a global health problem. Adverse individual, public health, and socioeconomic consequences are attributable to harmful alcohol use. Epidemiological studies have shown that alcohol use disorder (AUD) and alcohol-associated liver disease (ALD) are the top two pathologies among alcohol-related diseases. Consistent with the major role that the liver plays in alcohol metabolism, uncontrolled drinking may cause significant damage to the liver. This damage is initiated by excessive fat accumulation in the liver, which can further progress to advanced liver disease. The only effective therapeutic strategies currently available for ALD are alcohol abstinence or liver transplantation. Any molecule with dual-pronged effects at the central and peripheral organs controlling addictive behaviors and associated metabolic pathways are a potentially important therapeutic target for treating AUD and ALD. Ghrelin, a hormone primarily derived from the stomach, has such properties, and regulates both behavioral and metabolic functions. In this review, we highlight recent advances in understanding the peripheral and central functions of the ghrelin system and its role in AUD and ALD pathogenesis. We first discuss the correlation between blood ghrelin concentrations and alcohol use or abstinence. Next, we discuss the role of ghrelin in alcohol-seeking behaviors and finally its role in the development of fatty liver by metabolic regulations and organ crosstalk. We propose that a better understanding of the ghrelin system could open an innovative avenue for improved treatments for AUD and associated medical consequences, including ALD.


Assuntos
Transtornos Relacionados ao Uso de Álcool , Alcoolismo , Grelina , Hepatopatias Alcoólicas , Humanos
5.
Alcohol Clin Exp Res ; 46(1): 40-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773268

RESUMO

BACKGROUND AND AIMS: Approximately 3.5% of the global population is chronically infected with Hepatitis B Virus (HBV), which puts them at high risk of end-stage liver disease, with the risk of persistent infection potentiated by alcohol consumption. However, the mechanisms underlying the effects of alcohol on HBV persistence remain unclear. Here, we aimed to establish in vivo/ex vivo evidence that alcohol suppresses HBV peptides-major histocompatibility complex (MHC) class I antigen display on primary human hepatocytes (PHH), which diminishes the recognition and clearance of HBV-infected hepatocytes by cytotoxic T-lymphocytes (CTLs). METHODS: We used fumarylacetoacetate hydrolase (Fah)-/-, Rag2-/-, common cytokine receptor gamma chain knock-out (FRG-KO) humanized mice transplanted with human leukocyte antigen-A2 (HLA-A2)-positive hepatocytes. The mice were HBV-infected and fed control and alcohol diets. Isolated hepatocytes were exposed ex vivo to HBV 18-27-HLA-A2-restricted CTLs to quantify cytotoxicity. For mechanistic studies, we measured proteasome activities, unfolded protein response (UPR), and endoplasmic reticulum (ER) stress in hepatocytes from HBV-infected humanized mouse livers. RESULTS AND CONCLUSIONS: We found that alcohol feeding attenuated HBV core 18-27-HLA-A2 complex presentation on infected hepatocytes due to the suppression of proteasome function and ER stress induction, which diminished both the processing of HBV peptides and trafficking of HBV-MHC class I complexes to the hepatocyte surface. This alcohol-mediated decrease in MHC class I-restricted antigen presentation of the CTL epitope on target hepatocytes reduced the CTL-specific elimination of infected cells, potentially leading to HBV-infection persistence, which promotes end-stage liver disease outcomes.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Etanol/farmacologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Hepatócitos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Doença Hepática Terminal/virologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Antígeno HLA-A2/análise , Hepatócitos/transplante , Hepatócitos/virologia , Xenoenxertos , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Camundongos , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/fisiologia , Resposta a Proteínas não Dobradas/genética
6.
Alcohol Clin Exp Res ; 46(3): 359-370, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35076108

RESUMO

Progression of chronic infections to end-stage diseases and poor treatment results are frequently associated with alcohol abuse. Alcohol metabolism suppresses innate and adaptive immunity leading to increased viral load and its spread. In case of hepatotropic infections, viruses accelerate alcohol-induced hepatitis and liver fibrosis, thereby promoting end-stage outcomes, including cirrhosis and hepatocellular carcinoma (HCC). In this review, we concentrate on several unexplored aspects of these phenomena, which illustrate the combined effects of viral/bacterial infections and alcohol in disease development. We review alcohol-induced alterations implicated in immunometabolism as a central mechanism impacting metabolic homeostasis and viral pathogenesis in Simian immunodeficiency virus/human immunodeficiency virus infection. Furthermore, in hepatocytes, both HIV infection and alcohol activate oxidative stress to cause lysosomal dysfunction and leakage and apoptotic cell death, thereby increasing hepatotoxicity. In addition, we discuss the mechanisms of hepatocellular carcinoma and tumor signaling in hepatitis C virus infection. Finally, we analyze studies that review and describe the immune derangements in hepatotropic viral infections focusing on the development of novel targets and strategies to restore effective immunocompetency in alcohol-associated liver disease. In conclusion, alcohol exacerbates the pathogenesis of viral infections, contributing to a chronic course and poor outcomes, but the mechanisms behind these events are virus specific and depend on virus-alcohol interactions, which differ among the various infections.


Assuntos
Carcinoma Hepatocelular , Infecções por HIV , Hepatite C , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Etanol/efeitos adversos , Hepacivirus , Humanos , Cirrose Hepática
7.
Exp Mol Pathol ; 126: 104750, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35192844

RESUMO

The present review is based on the research presented at the symposium dedicated to the legacy of the two scientists that made important discoveries in the field of alcohol-induced liver damage: Professors C.S. Lieber and S.W. French. The invited speakers described pharmacological, toxicological and patho-physiological effects of alcohol misuse. Moreover, genetic biomarkers determining adverse drug reactions due to interactions between therapeutics used for chronic or infectious diseases and alcohol exposure were discussed. The researchers presented their work in areas of alcohol-induced impairment in lipid protein trafficking and endocytosis, as well as the role of lipids in the development of fatty liver. The researchers showed that alcohol leads to covalent modifications that promote hepatic dysfunction and injury. We concluded that using new advanced techniques and research ideas leads to important discoveries in science.


Assuntos
Hepatopatias Alcoólicas , Pesquisa Translacional Biomédica , Etanol , Humanos , Fígado , Hepatopatias Alcoólicas/genética
8.
Alcohol Alcohol ; 56(1): 8-16, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32869059

RESUMO

Chronic and excessive alcohol abuse cause direct and indirect detrimental effects on a wide range of body organs and systems and accounts for ~4% of deaths worldwide. Many factors influence the harmful effects of alcohol. This concise review presents newer insights into the role of select second hits in influencing the progression of alcohol-induced organ damage by synergistically acting to generate a more dramatic downstream biological defect. This review specifically addresses on how a lifestyle factor of high fat intake exacerbates alcoholic liver injury and its progression. This review also provides the mechanistic insights into how increasing matrix stiffness during liver injury promotes alcohol-induced fibrogenesis. It also discusses how hepatotropic viral (HCV, HBV) infections as well as HIV (which is traditionally not known to be hepatotropic), are potentiated by alcohol exposure to promote hepatotoxicity and fibrosis progression. Finally, this review highlights the impact of reactive aldehydes generated during alcohol and cigarette smoke coexposure impair innate antimicrobial defense and increased susceptibility to infections. This review was inspired by the symposium held at the 17th Congress of the European Society for Biomedical research on Alcoholism in Lille, France entitled 'Second hits in alcohol-related organ damage'.


Assuntos
Alcoolismo/complicações , Cirrose Hepática Alcoólica/etiologia , Alcoolismo/metabolismo , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Dieta Hiperlipídica , Progressão da Doença , Suscetibilidade a Doenças , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Hepatite B Crônica/complicações , Hepatite B Crônica/metabolismo , Hepatite C Crônica/complicações , Hepatite C Crônica/metabolismo , Humanos , Infecções , Cirrose Hepática Alcoólica/metabolismo , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 319(4): G432-G442, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755306

RESUMO

Alcohol consumption worsens hepatitis B virus (HBV) infection pathogenesis. We have recently reported that acetaldehyde suppressed HBV peptide-major histocompatibility complex I (MHC class I) complex display on hepatocytes, limiting recognition and subsequent removal of the infected hepatocytes by HBV-specific cytotoxic T lymphocytes (CTLs). This suppression was attributed to impaired processing of antigenic peptides by the proteasome. However, in addition to proteasome dysfunction, alcohol may induce endoplasmic reticulum (ER) stress and Golgi fragmentation in HBV-infected liver cells to reduce uploading of viral peptides to MHC class I and/or trafficking of this complex to the hepatocyte surface. Hence, the aim of this study was to elucidate whether alcohol-induced ER stress and Golgi fragmentation affect HBV peptide-MHC class I complex presentation on HBV+ hepatocytes. Here, we demonstrate that, while both acetaldehyde and HBV independently cause ER stress and Golgi fragmentation, the combined exposure provided an additive effect. Thus we observed an activation of the inositol-requiring enzyme 1α-X-box binding protein 1 and activation transcription factor (ATF)6α, but not the phospho PKR-like ER kinase-phospho eukaryotic initiation factor 2α-ATF4-C/EBP homologous protein arms of ER stress in HBV-transfected cells treated with acetaldehyde-generating system (AGS). In addition, Golgi proteins trans-Golgi network 46, GM130, and Giantin revealed punctate distribution, indicating Golgi fragmentation upon AGS exposure. Furthermore, the effects of acetaldehyde were reproduced by treatment with ER stress inducers, thapsigargin and tunicamycin, which also decreased the display of this complex and MHC class I turnover in HepG2.2.15 cells and HBV-infected primary human hepatocytes. Taken together, alcohol-induced ER stress and Golgi fragmentation contribute to the suppression of HBV peptide-MHC class I complex presentation on HBV+ hepatocytes, which may diminish their recognition by CTLs and promote persistence of HBV infection in hepatocytes.NEW & NOTEWORTHY Our current findings show that acetaldehyde accelerates endoplasmic reticulum (ER) stress by activating the unfolded protein response arms inositol-requiring enzyme 1α-X-box binding protein 1 and activation transcription factor (ATF)6α but not phospho PKR-like ER kinase-p eukaryotic initiation factor 2α-ATF4-C/EBP homologous protein in hepatitis B virus (HBV)-transfected HepG2.2.15 cells. It also potentiates Golgi fragmentation, as evident by punctate distribution of Golgi proteins, GM130, trans-Golgi network 46, and Giantin. While concomitantly increasing HBV DNA and HBV surface antigen titers, acetaldehyde-induced ER stress suppresses the presentation of HBV peptide-major histocompatibility complex I complexes on hepatocyte surfaces, thereby promoting the persistence of HBV infection in the liver.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Vírus da Hepatite B/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Fígado/virologia , Acetaldeído , Estresse do Retículo Endoplasmático/genética , Expressão Gênica/efeitos dos fármacos , Complexo de Golgi/ultraestrutura , Antígeno HLA-A2/análise , Células Hep G2 , Vírus da Hepatite B/genética , Antígenos de Histocompatibilidade Classe I/efeitos dos fármacos , Humanos , Fígado/imunologia , RNA Mensageiro/análise , Transfecção , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
10.
Am J Physiol Gastrointest Liver Physiol ; 316(4): G453-G461, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702902

RESUMO

Fatty liver is the earliest response of the liver to excessive ethanol consumption. Central in the development of alcoholic steatosis is increased mobilization of nonesterified free fatty acids (NEFAs) to the liver from the adipose tissue. In this study, we hypothesized that ethanol-induced increase in ghrelin by impairing insulin secretion, could be responsible for the altered lipid metabolism observed in adipose and liver tissue. Male Wistar rats were fed for 5-8 wk with control or ethanol Lieber-DeCarli diet, followed by biochemical analyses in serum and liver tissues. In addition, in vitro studies were conducted on pancreatic islets isolated from experimental rats. We found that ethanol increased serum ghrelin and decreased serum insulin levels in both fed and fasting conditions. These results were corroborated by our observations of a significant accumulation of insulin in pancreatic islets of ethanol-fed rats, indicating that its secretion was impaired. Furthermore, ethanol-induced reduction in circulating insulin was associated with lower adipose weight and increased NEFA levels observed in these rats. Additionally, we found that increased concentration of serum ghrelin was due to increased synthesis and maturation in the stomach of the ethanol-fed rats. We also report that in addition to its effect on the pancreas, ghrelin can also directly act on hepatocytes via the ghrelin receptors and promote fat accumulation. In conclusion, alcohol-induced elevation of circulating ghrelin levels impairs insulin secretion. Consequently, reduced circulating insulin levels likely contribute to increased free fatty acid mobilization from adipose tissue to liver, thereby contributing to hepatic steatosis. NEW & NOTEWORTHY Our studies are the first to report that ethanol-induced increases in ghrelin contribute to impaired insulin secretion, which results in the altered lipid metabolism observed in adipose and liver tissue in the setting of alcoholic fatty liver disease.


Assuntos
Tecido Adiposo/metabolismo , Etanol/farmacologia , Fígado Gorduroso Alcoólico/metabolismo , Grelina/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Animais , Depressores do Sistema Nervoso Central/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Pâncreas/metabolismo , Ratos , Ratos Wistar
11.
Am J Physiol Gastrointest Liver Physiol ; 317(2): G127-G140, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141391

RESUMO

Hepatitis B virus (HBV) infection and alcoholism are major public health problems worldwide, contributing to the development of end-stage liver disease. Alcohol intake affects HBV infection pathogenesis and treatment outcomes. HBV-specific cytotoxic T lymphocytes (CTLs) play an important role in HBV clearance. Many previous studies have focused on alcohol-induced impairments of the immune response. However, it is not clear whether alcohol alters the presentation of HBV peptide-major histocompatibility complex (MHC) class I complexes on infected hepatocytes resulting in escape of its recognition by CTLs. Hence, the focus of this study was to investigate the mechanisms by which ethanol metabolism affects the presentation of CTL epitope on HBV-infected hepatocytes. As demonstrated here, although continuous cell exposure to acetaldehyde-generating system (AGS) increased HBV load in HepG2.2.15 cells, it decreased the expression of HBV core peptide 18-27-human leukocyte antigen-A2complex (CTL epitope) on the cell surface. Moreover, we observed AGS-induced suppression of chymotrypsin- and trypsin-like proteasome activities necessary for peptide processing by proteasome as well as a decline in IFNγ-stimulated immunoproteasome (IPR) function and expression of PA28 activator and immunoproteasome subunits LMP7 and LMP2. Furthermore, IFNγ-induced activation of peptide-loading complex (PLC) components, such as transporter associated with antigen processing (TAP1) and tapasin, were suppressed by AGS. The attenuation of IPR and PLC activation was attributed to AGS-triggered impairment of IFNγ signaling in HepG2.2.15 cells. Collectively, all these downstream events reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, which may suppress CTL activation and the recognition of CTL epitopes on HBV-expressing hepatocytes by immune cells, thereby leading to persistence of liver inflammation.NEW & NOTEWORTHY Our study shows that in HBV-expressing HepG2.2.15 cells, acetaldehyde alters HBV peptide processing by suppressing chymotrypsin- and trypsin-like proteasome activities and decreases IFNγ-stimulated immunoproteasome function and expression of PA28 activator and immunoproteasome subunits. It also suppresses IFNγ-induced activation of peptide-loading complex (PLC) components due to impairment of IFNγ signaling via the JAK-STAT1 pathway. These acetaldehyde-induced dysfunctions reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, thereby leading to persistence of HBV infection.


Assuntos
Acetaldeído/metabolismo , Quimases/metabolismo , Etanol/metabolismo , Hepatite B , Complexo Principal de Histocompatibilidade/imunologia , Serina Endopeptidases/metabolismo , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apresentação de Antígeno , Antígenos HLA-D/imunologia , Células Hep G2 , Hepatite B/imunologia , Hepatite B/metabolismo , Vírus da Hepatite B/imunologia , Humanos , Interferon gama/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T Citotóxicos/imunologia
12.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L882-L890, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30211654

RESUMO

Older people are four times more likely to develop pneumonia than younger people. As we age, many components of pulmonary innate immunity are impaired, including slowing of mucociliary clearance. Ciliary beat frequency (CBF) is a major determinant of mucociliary clearance, and it slows as we age. We hypothesized that CBF is slowed in aging because of increased oxidative stress, which activates PKCε signaling. We pharmacologically inhibited PKCε in ex vivo mouse models of aging. We measured a slowing of CBF with aging that was reversed with inhibition using the novel PKC inhibitor, Ro-31-8220, as well as the PKCε inhibitor, PKCe141. Inhibition of PKCε using siRNA in mouse trachea also returned CBF to normal. In addition, antioxidants decrease PKCε activity and speed cilia. We also aged wild-type and PKCε KO mice and measured CBF. The PKCε KO mice were spared from the CBF slowing of aging. Using human airway epithelial cells from younger and older donors at air-liquid interface (ALI), we inhibited PKCε with siRNA. We measured a slowing of CBF with aging that was reversed with siRNA inhibition of PKCε. In addition, we measured bead clearance speeds in human ALI, which demonstrated a decrease in bead velocity with aging and a return to baseline after inhibition of PKCε. In summary, in human and mouse models, aging is associated with increased oxidant stress, which activates PKCε and slows CBF.


Assuntos
Envelhecimento/metabolismo , Cílios/metabolismo , Estresse Oxidativo/fisiologia , Proteína Quinase C-épsilon/metabolismo , Envelhecimento/fisiologia , Animais , Linhagem Celular , Cílios/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Feminino , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Depuração Mucociliar/fisiologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Traqueia/metabolismo , Traqueia/fisiopatologia
13.
Alcohol Clin Exp Res ; 42(7): 1206-1216, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29698568

RESUMO

BACKGROUND: Fracture healing in alcoholics is delayed and often associated with infections resulting in prolonged rehabilitation. It has been reported that binge drinking of alcohol increases oxidative stress and delays fracture healing in rats, which is prevented by treatment with the antioxidant n-acetyl cysteine (NAC). Oxidative stress is a significant factor in pathologies of various organs resulting from chronic alcoholism. Therefore, we hypothesize that treatment with NAC reduces oxidative stress and restores fracture healing in chronic alcoholics. METHODS: Rats (10 months old) were pair-fed the Lieber-DeCarli ethanol (EtOH) diet or control diet for 16 weeks. A closed fracture was performed and rats allowed to recover for 72 hours. Rats were divided into 4 groups-control, control + NAC, EtOH, and EtOH + NAC-and injected intraperitoneally with 200 mg/kg of NAC daily for 3 days. Serum and bone fracture callus homogenates were collected and assayed for traditional markers of inflammation, oxidative stress, and bone regeneration. RESULTS: The oxidative stress marker malondialdehyde (MDA) was increased in both serum and bone tissue in EtOH-fed animals compared to controls. NAC treatment significantly (p < 0.01) reduced MDA to near normal levels and dramatically increased the index of antioxidant efficacy (catalase/MDA ratio) (p < 0.01). Inflammatory markers tumor necrosis factor-α, interferon-γ, and interleukin-6 were significantly decreased in serum and callus following NAC treatment. NAC treatment reduced EtOH-induced bone resorption as evidenced by significant decreases in C-telopeptide of type-I-collagen levels (p < 0.05) and band-5 tartrate-resistant acid phosphatase levels in the tissue (p < 0.001). CONCLUSIONS: Oxidative stress and excessive inflammation are involved in the inhibition of fracture healing by EtOH. In this study, early short-term treatment of EtOH-fed animals with the antioxidant NAC reduced oxidative stress and normalized the innate immune response to fracture in the early phase of fracture healing, thereby restoring the normal onset of bone regeneration.


Assuntos
Acetilcisteína/farmacologia , Etanol/toxicidade , Fêmur/efeitos dos fármacos , Fêmur/lesões , Consolidação da Fratura/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Fêmur/metabolismo , Consolidação da Fratura/fisiologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
14.
Respir Res ; 18(1): 36, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193223

RESUMO

BACKGROUND: Co-exposure to cigarette smoke and alcohol leads to the generation of high concentrations of acetaldehyde and malondialdehyde in the lung. These aldehydes being highly electrophilic in nature react with biologically relevant proteins such as surfactant protein D (SPD) through a Schiff base reaction to generate SPD adducted malondialdehyde-acetaldehyde adduct (SPD-MAA) in mouse lung. SPD-MAA results in an increase in lung pro-inflammatory chemokine, keratinocyte chemoattractant (KC), and the recruitment of lung lavage neutrophils. Previous in vitro studies in bronchial epithelial cells and macrophages show that scavenger receptor A (SR-A1/CD204) is a major receptor for SPD-MAA. No studies have yet examined the in vivo role of SR-A1 in MAA-mediated lung inflammation. Therefore, we hypothesize that in the absence of SR-A1, MAA-induced inflammation in the lung is reduced or diminished. METHODS: To test this hypothesis, C57BL/6 WT and SR-A1 KO mice were nasally instilled with 50 µg/mL of SPD-MAA for 3 weeks (wks). After 3 weeks, bronchoalveolar lavage (BAL) fluid was collected and assayed for a total cell count, a differential cell count and CXCL1 (KC) chemokine. Lung tissue sections were stained with hematoxylin and eosin (H&E) and antibodies to MAA adduct. RESULTS: Results showed that BAL cellularity and influx of neutrophils were decreased in SR-A1 KO mice as compared to WT following repetitive SPD-MAA exposure. MAA adduct staining in the lung epithelium was decreased in SR-A1 KO mice. In comparison to WT, no increase in CXCL1 was observed in BAL fluid from SR-A1 KO mice over time. CONCLUSIONS: Overall, the data demonstrate that SR-A1/CD204 plays an important role in SPD-MAA induced inflammation in lung.


Assuntos
Acetaldeído/intoxicação , Mediadores da Inflamação/imunologia , Malondialdeído/intoxicação , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Proteína D Associada a Surfactante Pulmonar/intoxicação , Receptores Depuradores Classe A/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Depuradores Classe A/genética
15.
Alcohol Clin Exp Res ; 41(12): 2093-2099, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28941289

RESUMO

BACKGROUND: Malondialdehyde (MDA) and acetaldehyde (AA) exist following ethanol metabolism and tobacco pyrolysis. As such, lungs of individuals with alcohol use disorders (AUDs) are a target for the effects of combined alcohol and cigarette smoke metabolites. MDA and AA form a stable protein adduct, malondialdehyde-acetaldehyde (MAA) adduct, known to be immunogenic, profibrotic, and proinflammatory. MAA adduct is the dominant epitope in anti-MAA antibody formation. We hypothesized that MAA-adducted protein forms in lungs of those who both abuse alcohol and smoke cigarettes, and that this would be associated with systemically elevated anti-MAA antibodies. METHODS: Four groups were established: AUD subjects who smoked cigarettes (+AUD/+smoke), smokers without AUD (-AUD/+smoke), AUD without smoke (+AUD/-smoke), and non-AUD/nonsmokers (-AUD/-smoke). RESULTS: We observed a significant increase in MAA adducts in lung cells of +AUD/+smoke versus -AUD/-smoke. No significant increase in MAA adducts was observed in -AUD/+smoke or in +AUD/-smoke compared to -AUD/-smoke. Serum from +AUD/+smoke had significantly increased levels of circulating anti-MAA IgA antibodies. After 1 week of alcohol that MAA-adducted protein is formed in the lungs of those who smoke cigarettes and abuse alcohol, leading to a subsequent increase in serum IgA antibodies. CONCLUSIONS: MAA-adducted proteins could play a role in pneumonia and other diseases of the lung in the setting of AUD and smoking.


Assuntos
Acetaldeído/metabolismo , Alcoolismo/metabolismo , Autoanticorpos/sangue , Pulmão/metabolismo , Malondialdeído/metabolismo , Proteínas/metabolismo , Fumantes , Fumar/metabolismo , Acetaldeído/química , Adulto , Alcoolismo/complicações , Feminino , Humanos , Masculino , Malondialdeído/química , Ligação Proteica , Proteínas/química , Adulto Jovem
16.
Exp Mol Pathol ; 102(1): 162-180, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28077318

RESUMO

This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.


Assuntos
Alcoolismo/complicações , Estilo de Vida , Hepatopatias Alcoólicas/complicações , Microbiota , Hepatopatia Gordurosa não Alcoólica/complicações , Congressos como Assunto , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Hepatite Alcoólica/complicações , Hepatite Alcoólica/enzimologia , Hepatite Alcoólica/genética , Humanos , Hepatopatias Alcoólicas/enzimologia , Hepatopatias Alcoólicas/genética , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo Genético
17.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G930-40, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056722

RESUMO

Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1ß, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.


Assuntos
Acetaldeído/metabolismo , Apoptose , Hepacivirus/fisiologia , Hepatócitos/metabolismo , Replicação Viral , Linhagem Celular , Células Cultivadas , Hepacivirus/patogenicidade , Hepatócitos/virologia , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Amino Acids ; 48(8): 2025-39, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26940723

RESUMO

Skeletal muscles require energy either at constant low (e.g., standing and posture) or immediate high rates (e.g., exercise). To fulfill these requirements, myocytes utilize the phosphocreatine (PCr)/creatine (Cr) system as a fast energy buffer and shuttle. We have generated mice lacking L-arginine:glycine amidino transferase (AGAT), the first enzyme of creatine biosynthesis. These AGAT(-/-) (d/d) mice are devoid of the PCr/Cr system and reveal severely altered oxidative phosphorylation. In addition, they exhibit complete resistance to diet-induced obesity, which is associated with a chronic activation of AMP-activated protein kinase in muscle and white adipose tissue. The underlying metabolic rearrangements have not yet been further analyzed. Here, we performed gene expression analysis in skeletal muscle and a serum amino acid profile of d/d mice revealing transcriptomic and metabolic alterations in pyruvate and glucose pathways. Differential pyruvate tolerance tests demonstrated preferential conversion of pyruvate to alanine, which was supported by increased protein levels of enzymes involved in pyruvate and alanine metabolism. Pyruvate tolerance tests suggested severely impaired hepatic gluconeogenesis despite increased availability of pyruvate and alanine. Furthermore, enzymes of serine production and one-carbon metabolism were significantly up-regulated in d/d mice, indicating increased de novo formation of one-carbon units from carbohydrate metabolism linked to NAD(P)H production. Besides the well-established function of the PCr/Cr system in energy metabolism, our transcriptomic and metabolic analyses suggest that it plays a pivotal role in systemic one-carbon metabolism, oxidation/reduction, and biosynthetic processes. Therefore, the PCr/Cr system is not only an energy buffer and shuttle, but also a crucial component involved in numerous systemic metabolic processes.


Assuntos
Amidinotransferases/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Deficiência Intelectual/metabolismo , Metaboloma , Obesidade/metabolismo , Fosforilação Oxidativa , Fosfocreatina/metabolismo , Distúrbios da Fala/metabolismo , Transcriptoma , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Amidinotransferases/genética , Amidinotransferases/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Fosfocreatina/genética , Distúrbios da Fala/genética , Distúrbios da Fala/patologia
19.
Alcohol Clin Exp Res ; 40(12): 2563-2572, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27783409

RESUMO

BACKGROUND: Reactive aldehydes such as acetaldehyde and malondialdehyde generated as a result of alcohol metabolism and cigarette smoke exposure lead to the formation of malondialdehyde-acetaldehyde-adducted proteins (MAA adducts). These aldehydes can adduct to different proteins such as bovine serum albumin and surfactant protein A or surfactant protein D (SPD). Macrophages play an important role in innate immunity, but the effect of MAA adducts on macrophage function has not yet been examined. Because macrophage scavenger receptor A (SRA; CD204) mediates the uptake of modified proteins, we hypothesized that the effects of MAA-modified proteins on macrophage function are primarily mediated through SRA. METHODS: We tested this hypothesis by exposing SPD-MAA to macrophages and measuring functions. SPD-MAA treatment significantly stimulated pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) release in the macrophage cell line, RAW 264.7. RESULTS: A significant reduction in phagocytosis of zymosan particles was also observed. SPD-MAA stimulated a significant dose-dependent increase in TNF-α and interleukin (IL)-6 release from peritoneal macrophages (PMs) of wild-type (WT) mice. But significantly less TNF-α and IL-6 were released from PMs of SRA-/- mice. We observed a significant reduction in phagocytosis of zymosan particles in PMs from WT mice treated with SPD-MAA. No further SPD-MAA-induced reduction was seen in PMs from SRA-/- mice. SPD-MAA treatment significantly increased SRA mRNA expression, but had no effect on surface receptor protein expression. Protein kinase C alpha inhibitor and NF-κB inhibitor significantly reduced pro-inflammatory cytokine release in response to SPD-MAA. CONCLUSIONS: In conclusion, our data demonstrate that SRA is important for MAA-adducted protein-mediated effect on macrophage functions.


Assuntos
Acetaldeído/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Malondialdeído/química , Proteína A Associada a Surfactante Pulmonar/farmacologia , Proteína D Associada a Surfactante Pulmonar/farmacologia , Receptores Depuradores Classe A/genética , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Proteína A Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/química , Ratos , Receptores Depuradores Classe A/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
20.
Alcohol Clin Exp Res ; 40(11): 2329-2338, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27716962

RESUMO

BACKGROUND: Alcohol consumption exacerbates the pathogenesis of hepatitis C virus (HCV) infection and worsens disease outcomes. The exact reasons are not clear yet, but they might be partially attributed to the ability of alcohol to further suppress the innate immunity. Innate immunity is known to be already decreased by HCV in liver cells. METHODS: In this study, we aimed to explore the mechanisms of how alcohol metabolism dysregulates IFNα signaling (STAT1 phosphorylation) in HCV+ hepatoma cells. To this end, CYP2E1+ Huh7.5 cells were infected with HCV and exposed to the acetaldehyde (Ach) generating system (AGS). RESULTS: Continuously produced Ach suppressed IFNα-induced STAT1 phosphorylation, but increased the level of a protease, USP18 (both measured by Western blot), which interferes with IFNα signaling. Induction of USP18 by Ach was confirmed in primary human hepatocyte cultures and in livers of ethanol-fed HCV transgenic mice. Silencing of USP18 by specific siRNA attenuated the pSTAT1 suppression by Ach. The mechanism by which Ach down-regulates pSTAT1 is related to an enhanced interaction between IFNαR2 and USP18 that finally dysregulates the cross talk between the IFN receptor on the cell surface and STAT1. Furthermore, Ach decreases ISGylation of STAT1 (protein conjugation of a small ubiquitin-like modifier, ISG15, Western blot), which preserves STAT1 activation. Suppressed ISGylation leads to an increase in STAT1 K48 polyubiquitination which allows pSTAT1 degrading by proteasome. CONCLUSIONS: We conclude that Ach disrupts IFNα-induced STAT1 phosphorylation by the up-regulation of USP18 to block the innate immunity protection in HCV-infected liver cells, thereby contributing to HCV-alcohol pathogenesis. This, in part, may explain the mechanism of HCV-infection exacerbation/progression in alcohol-abusing patients.


Assuntos
Acetaldeído/farmacologia , Endopeptidases/metabolismo , Hepatite C/metabolismo , Interferon-alfa/metabolismo , Fígado/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Ubiquitina Tiolesterase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA