Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14238, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902389

RESUMO

Municipal solid waste compost, the circular economy's closed-loop product often contains excessive amounts of toxic heavy metals, leading to market rejection and disposal as waste material. To address this issue, the study develops a novel approach based on: (i) utilizing plant-based biodegradable chelating agent, L-glutamic acid, N,N-diacetic acid (GLDA) to remediate heavy metals from contaminated MSW compost, (ii) comparative assessment of GLDA removal efficiency at optimal conditions with conventional nonbiodegradable chelator EDTA, and (iii) enhanced pre- and post-leaching to evaluate the mobility, toxicity, and bioavailability of heavy metals. The impact of treatment variables, such as GLDA concentration, pH, and retention time, on the removal of heavy metals was investigated. The process was optimized using response surface methodology to achieve the highest removal effectiveness. The findings indicated that under optimal conditions (GLDA concentration of 150 mM, pH of 2.9, retention time for 120 min), the maximum removal efficiencies were as follows: Cd-90.32%, Cu-81.96%, Pb-91.62%, and Zn-80.34%. This process followed a pseudo-second-order kinetic equation. Following GLDA-assisted leaching, the geochemical fractions were studied and the distribution highlighted Cd, Cu, and Pb's potential remobilization in exchangeable fractions, while Zn displayed integration with the compost matrix. GLDA-assisted leaching and subsequent fractions illustrated transformation and stability. Therefore, this process could be a sustainable alternative for industrial applications (agricultural fertilizers and bioenergy) and social benefits (waste reduction, urban landscaping, and carbon sequestration) as it has controlled environmental footprints. Hence, the proposed remediation strategy, chemically assisted leaching, could be a practical option for extracting heavy metals from MSW compost, thereby boosting circular economy.

2.
Environ Sci Pollut Res Int ; 31(35): 48590-48607, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034376

RESUMO

Maximizing the impact of agricultural wastewater conservation practices (CP) to achieve total maximum daily load (TMDL) scenarios in agricultural watersheds is a challenge for the practitioners. The complex modeling requirements of sophisticated hydrologic models make their use and interpretation difficult, preventing the inclusion of local watershed stakeholders' knowledge in the development of optimal TMDL scenarios. The present study develops a seamless modeling approach to transform the complex modeling outcomes of Hydrologic Simulation Program Fortran (HSPF) into a simplified participatory framework for developing optimized management scenarios. The study evaluates seven conservation practices in the Pomme de Terre watershed in Minnesota, USA, focusing on sediment and phosphorus pollutant load reductions incorporating farmers' opinions to guide practitioners toward implementing cost-effective CPs. Results show reduced tillage and filter strips are the most cost-effective practices for non-point source pollution reduction, followed by conservation cover perennials. The integration of SAM with HSPF is crucial for sustainable field-scale implementation of conservation practices through enhanced involvement of amateur-modeling stakeholders and farmers directly connected to fields.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Hidrologia , Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Minnesota
3.
Environ Sci Pollut Res Int ; 30(24): 65779-65800, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37093381

RESUMO

Due to high metal toxicity, mixed municipal solid waste (MSW) compost is difficult to use. This study detected the presence of heavy metals (Cd, Cu, Pb, Ni, and Zn) in MSW compost through mineralogical analysis using X-ray diffraction (XRD) and performed topographical imaging and elemental mapping using a scanning electron microscope and energy dispersive X-ray analysis (SEM-EDX). Ethylenediaminetetraacetic acid (EDTA), a typical chelator, is tested to remove heavy metals from Indian MSW compost (New Delhi and Mumbai). It deals with two novel aspects, viz., (i) investigating the influence of EDTA-washing conditions, molarity, dosage, MSW compost-sample size, speed, and contact time, on their metal removal efficiencies, and (ii) maximizing the percentage removal of heavy metals by determining the optimal process control process parameters. These parameters were optimized in a batch reactor utilizing Taguchi orthogonal (L25) array. The optimization showed that the removal efficiencies were 96.71%, 47.37%, and 49.94% for Cd, Pb, and Zn in Delhi samples, whereas 45.55%, 79.52%, 59.63%, 82.31%, and 88.40% for Cd, Cu, Pb, Ni, and Zn in Mumbai samples. Results indicate that the removal efficiency of heavy metals was greatly influenced by EDTA-molarity. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of hydroxyl group, which aids heavy metal chelation. The results reveal the possibility of EDTA to reduce the hazardous properties of MSW compost.


Assuntos
Compostagem , Metais Pesados , Resíduos Sólidos/análise , Quelantes/química , Cádmio/análise , Ácido Edético , Chumbo/análise , Metais Pesados/análise , Solo/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA