Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402720, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924374

RESUMO

Efficient and sustainable seawater electrolysis is still limited due to the interference of chloride corrosion at the anode. The designing of suitable electrocatalysts is one of the crucial ways to boost electrocatalytic activity. However, the approach may fall short as achieving high current density often occurs in chlorine evolution reaction (CER)-dominating potential regions. Thereby, apart from developing an OER-active high-entropy alloy-based electrocatalyst, the present study also offers a unique way to protect anode surface under high current density or potential by using MoO4 2- as an effective inhibitor during seawater oxidation. The wide variation of d-band center of high-entropy alloy-based electrocatalyst allows great oxygen evolution reaction (OER) proficiency exhibiting an overpotential of 230 mV at current density of 20 mA cm-2. Besides, the electrocatalyst demonstrates impressive stability over 500 h at high current density of 1 A cm-2 or at a high oxidation potential of 2.0 V versus RHE in the presence of a molybdate inhibitor. Theoretical and experimental studies reveal MoO4 2- electrostatically accumulated at anode surface due to higher adsorption ability, thereby creating a protective layer against chlorides without affecting OER.

2.
Dalton Trans ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129470

RESUMO

The quest for cost effective but active electrocatalysts for water oxidation is at the forefront of research towards hydrogen economy. In this regard, bamboo as biomass derived N-doped cellulosic carbon has shown potential electrocatalytic performance towards water oxidation. The impregnation of optimum metallic Fe boosts the performance further, achieving an overpotential value of 238 mV at a benchmark current density of 10 mA cm-2. Owing to its promising OER performances in alkaline freshwater, the electrocatalyst was further explored in alkaline saline water and alkaline real seawater, exhibiting overpotentials of 272 mV and 280 mV, respectively, to reach 10 mA cm-2 current density. Most importantly, the protective graphitic multilayer surrounding the metallic Fe allowed the electrocatalyst to demonstrate excellent durability over 30 h even at a high current density in alkaline real seawater electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA