Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(27): e202202515, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35504856

RESUMO

Two-dimensional (2D) MXene-based lamellar membranes bearing interlayers of tunable hydrophilicity are promising for high-performance water purification. The current challenge lies in how to engineer the pore wall's surface properties in the subnano-confinement environment while ensuring its high selectivity. Herein, poly(ionic liquid)s, equipped with readily exchangeable counter anions, succeeded as a hydrophilicity modifier in addressing this issue. Lamellar membranes bearing nanochannels of tailorable hydrophilicity are constructed via assembly of poly(ionic liquid)-armored MXene nanosheets. By shifting the interlayer galleries from being hydrophilic to more hydrophobic via simple anion exchange, the MXene membrane performs drastically better for both the permeance (by two-fold improvement) and rejection (≈99 %). This facile method opens up a new avenue for building 2D material-based membranes of enhancing molecular transport and sieving effect.

2.
Angew Chem Int Ed Engl ; 59(39): 17187-17191, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32583932

RESUMO

Reversible regulation of membrane microstructures via non-covalent interactions is of considerable interest yet remains a challenge. Herein, we discover a general one-step approach to fabricate supramolecular porous polyelectrolyte membranes (SPPMs) from a single poly(ionic liquid) (PIL). The experimental results and theoretical simulation suggested that SPPMs were formed by a hydrogen-bond-induced phase separation of a PIL between its polar and apolar domains, which were linked together by water molecules. This unique feature was capable of modulating microscopic porous architectures and thus the global mechanical property of SPPMs by a rational design of the molecular structure of PILs. Such SPPMs could switch porosity upon thermal stimuli, as exemplified by dynamically adaptive transparency to thermal fluctuation. This finding provides fascinating opportunities for creating multifunctional SPPMs.

3.
Mater Adv ; 2(15): 5203-5212, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34382003

RESUMO

This study deals with the facile synthesis of Fe1-x S nanoparticle-containing nitrogen-doped porous carbon membranes (denoted as Fe1-x S/N-PCMs) via vacuum carbonization of hybrid porous poly(ionic liquid) (PIL) membranes, and their successful use as a sulfur host material to mitigate the shuttle effect in lithium-sulfur (Li-S) batteries. The hybrid porous PIL membranes as the sacrificial template were prepared via ionic crosslinking of a cationic PIL with base-neutralized 1,1'-ferrocenedicarboxylic acid, so that the iron source was molecularly incorporated into the template. The carbonization process was investigated in detail at different temperatures, and the chemical and porous structures of the carbon products were comprehensively analyzed. The Fe1-x S/N-PCMs prepared at 900 °C have a multimodal pore size distribution with a satisfactorily high surface area and well-dispersed iron sulfide nanoparticles to physically and chemically confine the LiPSs. The sulfur/Fe1-x S/N-PCM composites were then tested as electrodes in Li-S batteries, showing much improved capacity, rate performance and cycle stability, in comparison to iron sulfide-free, nitrogen-doped porous carbon membranes.

4.
ACS Nano ; 15(3): 4440-4449, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33587595

RESUMO

Assembling two-dimensional (2D) materials by polyelectrolyte often suffers from inhomogeneous microstructures due to the conventional mixing-and-simultaneous-complexation procedure ("mix-and-complex") in aqueous solution. Herein a "mix-then-on-demand-complex" concept via on-demand in situ cascade anionization and ionic complexation of 2D materials is raised that drastically improves structural order in 2D assemblies, as exemplified by classical graphene oxide (GO)-based ultrathin membranes. Specifically, in dimethyl sulfoxide, the carboxylic acid-functionalized GO sheets (COOH-GOs) were mixed evenly with a cationic poly(ionic liquid) (PIL) and upon filtration formed a well-ordered layered composite membrane with homogeneous distribution of PIL chains in it; next, whenever needed, it was alkali-treated to convert COOH-GO in situ into its anionized state COO--GO that immediately complexed ionically with the surrounding cationic PIL chains. This "mix-then-on-demand-complex" concept separates the ionic complexation of GO and polyelectrolytes from their mixing step. By synergistically combining the PIL-induced hydrophobic confinement effect and supramolecular interactions, the as-fabricated nanofiltration membranes carry interface transport nanochannels between GO and PIL, reaching a high water permeability of 96.38 L m-2 h-1 bar-1 at a maintained excellent dye rejection 99.79% for 150 h, exceeding the state-of-the-art GO-based hybrid membranes. The molecular dynamics simulations support the experimental data, confirming the interface spacing between GO and PIL as the water transport channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA