Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Transplantation ; 107(12): 2526-2532, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493609

RESUMO

BACKGROUND: Although donor-specific antibody pre- and posttransplantation is routinely assessed, accurate quantification of memory alloreactive B cells that mediate recall antibody response remains challenging. Major histocompatibility complex (MHC) tetramers have been used to identify alloreactive B cells in mice and humans, but the specificity of this approach has not been rigorously assessed. METHODS: B-cell receptors from MHC tetramer-binding single B cells were expressed as mouse recombinant immunoglobulin G1 (rIgG1) monoclonal antibodies, and the specificity was assessed with a multiplex bead assay. Relative binding avidity of rIgG1 was measured by modified dilution series technique and surface plasmon resonance. Additionally, immunoglobulin heavy chain variable regions of 50 individual B-cell receptors were sequenced to analyze the rate of somatic hypermutation. RESULTS: The multiplex bead assay confirmed that expressed rIgG1 monoclonal antibodies were preferentially bound to bait MHC class II I-E d over control I-A d and I-A b tetramers. Furthermore, the dissociation constant 50 binding avidities of the rIgG1 ranged from 10 mM to 7 nM. The majority of tetramer-binding B cells were low avidity, and ~12.8% to 15.2% from naive and tolerant mice and 30.9% from acute rejecting mice were higher avidity (dissociation constant 50 <1 mM). CONCLUSIONS: Collectively, these studies demonstrate that donor MHC tetramers, under stringent binding conditions with decoy self-MHC tetramers, can specifically identify a broad repertoire of donor-specific B cells under conditions of rejection and tolerance.


Assuntos
Complexo Principal de Histocompatibilidade , Tolerância ao Transplante , Humanos , Camundongos , Animais , Antígenos de Histocompatibilidade Classe II , Imunoglobulina G , Anticorpos Monoclonais , Receptores de Antígenos de Linfócitos B
2.
Front Immunol ; 8: 1169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970838

RESUMO

Clinical observations that kidney transplant recipients receiving belatacept who experienced T cell-mediated acute rejection can be successfully treated and subsequently maintained on belatacept-based immunosuppression suggest that belatacept is able to control memory T cells. We recently reported that treatment with CTLA4-Ig from day 6 posttransplantation successfully rescues allografts from acute rejection in a BALB/c to C57BL/6 heart transplant model, in part, by abolishing B cell germinal centers and reducing alloantibody titers. Here, we show that CTLA4-Ig is additionally able to inhibit established T cell responses independently of B cells. CTLA4-Ig inhibited the in vivo cytolytic activity of donor-specific CD8+ T cells, and the production of IFNγ by graft-infiltrating T cells. Delayed CTLA4-Ig treatment did not reduce the numbers of graft-infiltrating T cells nor prevented the accumulation of antigen-experienced donor-specific memory T cells in the spleen. Nevertheless, delayed CTLA4-Ig treatment successfully maintained long-term graft acceptance in the majority of recipients that had experienced a rejection crisis, and enabled the acceptance of secondary BALB/c heart grafts transplanted 30 days after the first transplantation. In summary, we conclude that delayed CTLA4-Ig treatment is able to partially halt ongoing T cell-mediated acute rejection. These findings extend the functional efficacy of CTLA4-Ig therapy to effector T cells and provide an explanation for why CTLA4-Ig-based immunosuppression in the clinic successfully maintains long-term graft survival after T cell-mediated rejection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA