Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514905

RESUMO

Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease.IMPORTANCE Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.


Assuntos
Apoptose/imunologia , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Orthoreovirus Mamífero 3/imunologia , Orthoreovirus de Mamíferos/imunologia , Infecções por Reoviridae/imunologia , Animais , Antígenos Virais/imunologia , Linhagem Celular , Cricetinae , Células Epiteliais/patologia , Células Epiteliais/virologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Infecções por Reoviridae/patologia
2.
J Virol ; 88(5): 2385-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371059

RESUMO

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging arbovirus responsible for outbreaks of infection throughout Asia and Africa, causing an acute illness characterized by fever, rash, and polyarthralgia. Although CHIKV infects a broad range of host cells, little is known about how CHIKV binds and gains access to the target cell interior. In this study, we tested whether glycosaminoglycan (GAG) binding is required for efficient CHIKV replication using CHIKV vaccine strain 181/25 and clinical isolate SL15649. Preincubation of strain 181/25, but not SL15649, with soluble GAGs resulted in dose-dependent inhibition of infection. While parental Chinese hamster ovary (CHO) cells are permissive for both strains, neither strain efficiently bound to or infected mutant CHO cells devoid of GAG expression. Although GAGs appear to be required for efficient binding of both strains, they exhibit differential requirements for GAGs, as SL15649 readily infected cells that express excess chondroitin sulfate but that are devoid of heparan sulfate, whereas 181/25 did not. We generated a panel of 181/25 and SL15649 variants containing reciprocal amino acid substitutions at positions 82 and 318 in the E2 glycoprotein. Reciprocal exchange at residue 82 resulted in a phenotype switch; Gly(82) results in efficient infection of mutant CHO cells but a decrease in heparin binding, whereas Arg(82) results in reduced infectivity of mutant cells and an increase in heparin binding. These results suggest that E2 residue 82 is a primary determinant of GAG utilization, which likely mediates attenuation of vaccine strain 181/25. IMPORTANCE: Chikungunya virus (CHIKV) infection causes a debilitating rheumatic disease that can persist for months to years, and yet there are no licensed vaccines or antiviral therapies. Like other alphaviruses, CHIKV displays broad tissue tropism, which is thought to be influenced by virus-receptor interactions. In this study, we determined that cell-surface glycosaminoglycans are utilized by both a vaccine strain and a clinical isolate of CHIKV to mediate virus binding. We also identified an amino acid polymorphism in the viral E2 attachment protein that influences utilization of glycosaminoglycans. These data enhance an understanding of the viral and host determinants of CHIKV cell entry, which may foster development of new antivirals that act by blocking this key step in viral infection.


Assuntos
Substituição de Aminoácidos , Vírus Chikungunya/fisiologia , Glicosaminoglicanos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas do Envelope Viral/genética , Infecções por Alphavirus/metabolismo , Animais , Células CHO , Febre de Chikungunya , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Cricetinae , Cricetulus , Endossomos/metabolismo , Endossomos/virologia , Genótipo , Glicosaminoglicanos/farmacologia , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacologia , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutação , Multimerização Proteica , Eletricidade Estática , Células Vero , Proteínas do Envelope Viral/química , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
3.
Sci Adv ; 9(38): eadj1736, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738347

RESUMO

Pathology studies of SARS-CoV-2 Omicron variants of concern (VOC) are challenged by the lack of pathogenic animal models. While Omicron BA.1 and BA.2 replicate in K18-hACE2 transgenic mice, they cause minimal to negligible morbidity and mortality, and less is known about more recent Omicron VOC. Here, we show that in contrast to Omicron BA.1, BA.5-infected mice exhibited high levels of morbidity and mortality, correlating with higher early viral loads. Neither Omicron BA.1 nor BA.5 replicated in brains, unlike most prior VOC. Only Omicron BA.5-infected mice exhibited substantial weight loss, high pathology scores in lungs, and high levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid, and 5- to 8-month-old mice exhibited 100% fatality. These results identify a rodent model for pathogenesis or antiviral countermeasure studies for circulating SARS-CoV-2 Omicron BA.5. Further, differences in morbidity and mortality between Omicron BA.1 and BA.5 provide a model for understanding viral determinants of pathogenicity.


Assuntos
COVID-19 , Animais , Camundongos , Virulência , SARS-CoV-2 , Antivirais , Camundongos Transgênicos
4.
Science ; 356(6333): 44-50, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386004

RESUMO

Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.


Assuntos
Antígenos/imunologia , Doença Celíaca/imunologia , Doença Celíaca/virologia , Glutens/imunologia , Inflamação/virologia , Infecções por Reoviridae/complicações , Infecções por Reoviridae/imunologia , Células Th1/imunologia , Animais , Dieta/efeitos adversos , Modelos Animais de Doenças , Engenharia Genética , Humanos , Tolerância Imunológica , Inflamação/imunologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Intestinos/imunologia , Intestinos/patologia , Intestinos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Interferon alfa e beta/genética , Reoviridae/genética
5.
Cell Host Microbe ; 18(1): 86-95, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26159721

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted RNA virus that causes acute febrile infection associated with polyarthralgia in humans. Mechanisms of protective immunity against CHIKV are poorly understood, and no effective therapeutics or vaccines are available. We isolated and characterized human monoclonal antibodies (mAbs) that neutralize CHIKV infectivity. Among the 30 mAbs isolated, 13 had broad and ultrapotent neutralizing activity (IC50 < 10 ng/ml), and all of these mapped to domain A of the E2 envelope protein. Potent inhibitory mAbs blocked post-attachment steps required for CHIKV membrane fusion, and several were protective in a lethal challenge model in immunocompromised mice, even when administered at late time points after infection. These highly protective mAbs could be considered for prevention or treatment of CHIKV infection, and their epitope location in domain A of E2 could be targeted for rational structure-based vaccine development.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Febre de Chikungunya/terapia , Vírus Chikungunya/imunologia , Imunização Passiva/métodos , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/isolamento & purificação , Quimioprevenção/métodos , Vírus Chikungunya/fisiologia , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Camundongos , Ligação Proteica , Análise de Sobrevida , Resultado do Tratamento , Proteínas do Envelope Viral/imunologia , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA