Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198321

RESUMO

Secretome of multipotent mesenchymal stromal cells (MSCs) is actively used in biomedical applications such as alveolar bone regeneration, treatment of cardiovascular disease, and neurodegenerative disorders. Nevertheless, hMSCs have low proliferative potential and production of the industrial quantity of their secretome might be challenging. Human fetal multipotent mesenchymal stromal cells (FetMSCs) isolated from early human embryo bone marrow are easy to expand and might be a potential source for pharmaceutical substances production based on their secretome. However, the secretome of FetMSCs was not previously analyzed. Here, we describe the secretome of FetMSCs using LC-MALDI shotgun proteomics. We identified 236 proteins. Functional annotation of the identified proteins revealed their involvement in angiogenesis, ossification, regulation of apoptosis, and immune response processes, which made it promising for biomedical applications. The proteins identified in the FetMSCs secretome are involved in the same biological processes as proteins from previously described adult hMSCs secretomes. Nevertheless, many of the common hMSCs secretome components (such as VEGF, FGF, Wnt and TGF-ß) have not been identified in the FetMSCs secretome.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Cromatografia Líquida , Biologia Computacional , Meios de Cultivo Condicionados , Humanos , Proteômica , Medicina Regenerativa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
2.
Biomedicines ; 12(10)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39457608

RESUMO

Background/Objectives: Dermal fibroblasts (DFs) are key participants in skin hypertrophic scarring, and their properties are being studied to identify the molecular and cellular mechanisms underlying the pathogenesis of skin scarring. Methods: In the present work, we performed a comparative analysis of DFs isolated from normal skin (normal dermal fibroblasts, NDFs), and hypertrophic scar skin (hypertrophic scar fibroblasts, HTSFs). The fibroblasts were karyotyped and phenotyped, and experiments on growth rate, wound healing, and single-cell motility were conducted. Results: Comparative analysis revealed a minor karyotype difference between cells. However, HTSFs are characterized by higher proliferation level and motility compared to NDFs. These significant differences may be associated with quantitative and qualitative differences in the cell secretome. A proteomic comparison of NDF and HTSF found that differences were associated with metabolic proteins reflecting physiological differences between the two cells lines. Numerous unique proteins were found only in the vesicular phase of vHTSFs. Some proteins involved in cell proliferation (protein-glutamine gamma-glutamyltransferase K) and cell motility (catenin delta-1), which regulate gene transcription and the activity of Rho family GTPases and downstream cytoskeletal dynamics, were identified. A number of proteins which potentially play a role in fibrosis and inflammation (mucin-5B, CD97, adhesion G protein-coupled receptor E2, antileukoproteinase, protein S100-A8 and S100-A9, protein caspase recruitment domain-containing protein 14) were detected in vHTSFs. Conclusions: A comparative analysis of primary cell cultures revealed their various properties, especially in the cell secretome. These proteins may be considered promising target molecules for developing treatment or prevention strategies for pathological skin scarring.

3.
Biomedicines ; 9(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34829895

RESUMO

The use of mesenchymal stromal cells (MSCs) for tissue engineering of hyaline cartilage is a topical area of regenerative medicine that has already entered clinical practice. The key stage of this procedure is to create conditions for chondrogenic differentiation of MSCs, increase the synthesis of hyaline cartilage extracellular matrix proteins by these cells and activate their proliferation. The first such works consisted in the indirect modification of cells, namely, in changing the conditions in which they are located, including microfracturing of the subchondral bone and the use of 3D biodegradable scaffolds. The most effective methods for modifying the cell culture of MSCs are protein and physical, which have already been partially introduced into clinical practice. Genetic methods for modifying MSCs, despite their effectiveness, have significant limitations. Techniques have not yet been developed that allow studying the effectiveness of their application even in limited groups of patients. The use of MSC modification methods allows precise regulation of cell culture proliferation, and in combination with the use of a 3D biodegradable scaffold, it allows obtaining a hyaline-like regenerate in the damaged area. This review is devoted to the consideration and comparison of various methods used to modify the cell culture of MSCs for their use in regenerative medicine of cartilage tissue.

4.
Methods Protoc ; 4(4)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34842796

RESUMO

Damage to the hyaline layer of the articular surface is an urgent problem for millions of people around the world. At present, a large number of experimental methods are being developed to address this problem, including the transplantation of a cell-engineered construct (CEC) composed of a biodegradable scaffold with a premixed cell culture into the damaged area of the articular surface. However, current methods for analyzing the effectiveness of such CECs have significant limitations. This study aimed to compare the SEM technique, classical histology, and cryosectioning for the analysis of CECs transplanted to hyaline cartilage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA