Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Hyperthermia ; 38(1): 263-272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33612046

RESUMO

PURPOSE: While systemic tumor-stimulating effects can occur following ablation of normal liver linked to the IL-6/HGF/VEGF cytokinetic pathway, the potential for tumor cells themselves to produce these unwanted effects is currently unknown. Here, we study whether partially treated tumors induce increased tumor growth post-radiofrequency thermal ablation (RFA). METHODS: Tumor growth was measured in three immunocompetent, syngeneic tumor models following partial RFA of the target tumor (in subcutaneous CT26 and MC38 mouse colorectal adenocarcinoma, N = 14 each); and in a distant untreated tumor following partial RFA of target subcutaneous R3230 rat breast adenocarcinoma (N = 12). Tumor cell proliferation (ki-67) and microvascular density (CD34) was assessed. In R3230 tumors, in vivo mechanism of action was assessed following partial RFA by measuring IL-6, HGF, and VEGF expression (ELISA) and c-Met protein (Western blot). Finally, RFA was performed in R3230 tumors with adjuvant c-Met kinase inhibitor or VEGF receptor inhibitor (at 3 days post-RFA, N = 3/arm, total N = 12). RESULTS: RFA stimulated tumor growth in vivo in residual, incompletely treated surrounding CT26 and MC38 tumor at 3-6 days (p < 0.01). In R3230, RFA increased tumor growth in distant tumor 7 days post treatment compared to controls (p < 0.001). For all models, Ki-67 and CD34 were elevated (p < 0.01, all comparisons). IL-6, HGF, and VEGF were also upregulated post incomplete tumor RFA (p < 0.01). These markers were suppressed to baseline levels with adjuvant c-MET kinase or VEGF receptor inhibition. CONCLUSION: Incomplete RFA of a target tumor can sufficiently stimulate residual tumor cells to induce accelerated growth of distant tumors via the IL-6/c-Met/HGF pathway and VEGF production.


Assuntos
Adenocarcinoma , Ablação por Cateter , Hipertermia Induzida , Adenocarcinoma/cirurgia , Animais , Carcinogênese , Proliferação de Células , Camundongos , Ratos
2.
Int J Hyperthermia ; 37(1): 119-129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969029

RESUMO

Purpose: The aim of this study was to determine whether moderate hyperthermic doses, routinely encountered in the periablational zone during thermal ablation, activate tumor cells sufficiently to secrete pro-tumorigenic factors that can induce increased proliferation.Material and methods: R3230 rat mammary tumor cells and human cancer cell lines, MCF7 breast adenocarcinoma, HepG2 and Huh7 HCC, and HT-29 and SW480 colon adenocarcinoma, were heated in to 45 ± 1 °C or 43 ± 1 °C in vitro for 5-10 min and incubated thereafter at 37 °C for 1.5, 3 or 8 hr (n = 3 trials each; total N = 135). mRNA expression profiles of cytokines implicated in RF-induced tumorigenesis including IL-6, TNFα, STAT3, HGF, and VEGF, were evaluated by relative quantitative real-time PCR. HSP70 was used as control. c-Met and STAT3 levels were assessed by Western blot. Finally, naïve cancer cells were incubated with medium from R3230 and human cancer cells that were subjected to 43-45 °C for 5 or 10 min and incubated for 3 or 8 h at 37 °C in an xCELLigence or incuCyte detection system.Results: Cell-line-specific dose and time-dependent elevations of at least a doubling in HSP70, IL-6, TNFα, STAT3, and HGF gene expression were observed in R3230 and human cancer cells subjected to moderate hyperthermia. R3230 and several human cell lines showed increased phosphorylation of STAT3 3 h post-heating and increased c-Met following heating. Medium of cancer cells subject to moderate hyperthermia induced statistically significant accelerated cell growth of all cell lines compared to non-heated media (p < 0.01, all comparisons).Conclusion: Heat-damaged human tumor cells by themselves can induce proliferation of tumor by releasing pro-tumorigenic factors.


Assuntos
Carcinoma Hepatocelular/radioterapia , Calefação/métodos , Hipertermia Induzida/métodos , Neoplasias Hepáticas/radioterapia , Animais , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Ratos
3.
Gastroenterology ; 153(5): 1404-1415, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28802563

RESUMO

BACKGROUND & AIMS: Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. METHODS: We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. RESULTS: We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of ß-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. CONCLUSIONS: In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce triglyceride levels, by increasing MIR122, might be developed for treatment of metabolic syndrome.


Assuntos
Metabolismo Energético , Ácidos Graxos não Esterificados/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Triglicerídeos/biossíntese , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Tecido Adiposo/metabolismo , Animais , Antagomirs/genética , Antagomirs/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Dioxóis/farmacologia , Metabolismo Energético/efeitos dos fármacos , Células HEK293 , Humanos , Fígado/efeitos dos fármacos , Masculino , Metabolômica/métodos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Músculo Esquelético/efeitos dos fármacos , Oxirredução , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção
4.
Gastroenterology ; 151(5): 999-1010.e3, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27477940

RESUMO

BACKGROUND & AIMS: Anemia is associated commonly with acute and chronic inflammation, but the mechanisms of their interaction are not clear. We investigated whether microRNA 122 (MIR122), which is generated in the liver and is secreted into the blood, is involved in the development of anemia associated with inflammation. METHODS: We characterized the primary transcript of the human liver-specific MIR122 using Northern blot, quantitative real-time polymerase chain reaction, and 3' and 5' rapid amplification of cDNA ends analyses. We studied regulation of MIR122 in human hepatocellular carcinoma cell lines (Huh7 and HepG2) as well as in C57BL/6 and mice with disruption of the tumor necrosis factor (Tnf) gene. Liver tissues were collected and analyzed by bioluminescence imaging or immunofluorescence. Inflammation in mice was induced by lipopolysaccharide (LPS) or by cerulein injections. Mice were given 4 successive injections of LPS, leading to inflammation-induced anemia. Steatohepatitis was induced with a choline-deficient, high-fat diet. Hemolytic anemia was stimulated by phenylhydrazine injection. MIR122 was inhibited in mice by tail-vein injection of an oligonucleotide antagonist of MIR122. MicroRNA and messenger RNA levels were determined by quantitative real-time polymerase chain reaction. RESULTS: The primary transcript of MIR122 spanned 5 kb, comprising 3 exons; the third encodes MIR122. Within the MIR122 promoter region we identified a nuclear factor-κB binding site and showed that RELA (NF-κB p65 subunit), as well as activators of NF-κB (TNF and LPS), increased promoter activity of MIR122. Administration of LPS to mice induced secretion of MIR122 into blood, which required TNF. Secreted MIR122 reached the kidney and reduced expression of erythropoietin (Epo), which we identified as a MIR122 target gene. Injection of mice with an oligonucleotide antagonist of MIR122 increased blood levels of EPO, reticulocytes, and hemoglobin. We found an inverse relationship between blood levels of MIR122 and EPO in mice with acute pancreatitis or steatohepatitis, and also in patients with acute inflammation. CONCLUSION: In mice, we found that LPS-induced inflammation increases blood levels of MIR122, which reduces expression of Epo in the kidney; this is a mechanism of inflammation-induced anemia. Strategies to block MIR122 in patients with inflammation could reduce the development or progression of anemia.


Assuntos
Anemia/etiologia , Eritropoetina/sangue , Inflamação/complicações , MicroRNAs/metabolismo , Anemia/metabolismo , Animais , Biomarcadores/metabolismo , Northern Blotting , Feminino , Células Hep G2 , Humanos , Inflamação/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real
5.
Hepatology ; 64(5): 1623-1636, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27302319

RESUMO

The tumor suppressor p53 is a central regulator of signaling pathways that controls the cell cycle and maintains the integrity of the human genome. p53 level is regulated by mouse double minute 2 homolog (Mdm2), which marks p53 for proteasomal degradation. The p53-Mdm2 circuitry is subjected to complex regulation by a variety of mechanisms, including microRNAs (miRNAs). We found a novel effector of this regulatory circuit, namely, miR-122*, the passenger strand of the abundantly expressed liver-specific miR-122. Here, we demonstrate that miR-122* levels are reduced in human hepatocellular carcinoma (HCC). We found that miR-122* targets Mdm2, thus participating as an important player in the p53-Mdm2 circuitry. Moreover, we observed significant negative correlation between levels of miR-122* and Mdm2 in a large set of human HCC samples. In vivo tumorigenicity assays demonstrate that miR-122* is capable of inhibiting tumor growth, emphasizing the tumor-suppressor characteristics of this miRNA. Furthermore, we show that blocking miR-122 in murine livers with an antagomiR-122 (miRNA inhibitor) results in miR-122* accumulation, leading to Mdm2 repression followed by elevated p53 protein levels. CONCLUSION: miR-122*, the passenger strand of miR-122, regulates the activity of p53 by targeting Mdm2. Importantly, similarly to miR-122, miR-122* is significantly down-regulated in human HCC. We therefore propose that miR-122* is an important contributor to the tumor suppression activity previously attributed solely to miR-122. (Hepatology 2016;64:1623-1636).


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Supressoras de Tumor/fisiologia
6.
Toxicol Pathol ; 44(6): 856-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27147553

RESUMO

Conventional chemotherapy treatments for pancreatic cancer are mainly palliative. RNA interference (RNAi)-based drugs present the potential for a new targeted treatment. LOcal Drug EluteR (LODER(TM)) is a novel biodegradable polymeric matrix that shields drugs against enzymatic degradation and releases small interfering RNA (siRNA) against G12D-mutated KRAS (siG12D). siG12D-LODER has successfully passed a phase 1/2a clinical trial. Such a formulation necessitates biocompatibility and safety studies. We describe the safety and toxicity studies with siG12D-LODER in 192 Hsd:Sprague Dawley rats, after repeated subcutaneous administrations (days 1, 14, and 28). Animals were sacrificed on days 29 and 42 (recovery phase). In all groups, no adverse effects were noted, and all animals showed favorable local and systemic tolerability. Histopathologically, LODER implantation resulted in the expected capsule formation, composed of a thin fibrotic tissue. On the interface between the cavity and the capsule, a single layer composed of macrophages and multinucleated giant cells was observed. No difference was noted between the placebo and siG12D-LODER groups. These findings provide valuable information for future preclinical studies with siRNA-bearing biodegradable polymers and for the safety aspects of RNAi-based drugs as a targeted therapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Portadores de Fármacos/farmacologia , Ácido Láctico/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Ácido Poliglicólico/farmacologia , RNA Interferente Pequeno/farmacologia , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Ratos , Ratos Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 110(51): 20723-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297898

RESUMO

Pancreatic ductal adenocarcinoma (PDA) represents an unmet therapeutic challenge. PDA is addicted to the activity of the mutated KRAS oncogene which is considered so far an undruggable therapeutic target. We propose an approach to target KRAS effectively in patients using RNA interference. To meet this challenge, we have developed a local prolonged siRNA delivery system (Local Drug EluteR, LODER) shedding siRNA against the mutated KRAS (siG12D LODER). The siG12D LODER was assessed for its structural, release, and delivery properties in vitro and in vivo. The effect of the siG12D LODER on tumor growth was assessed in s.c. and orthotopic mouse models. KRAS silencing effect was further assessed on the KRAS downstream signaling pathway. The LODER-encapsulated siRNA was stable and active in vivo for 155 d. Treatment of PDA cells with siG12D LODER resulted in a significant decrease in KRAS levels, leading to inhibition of proliferation and epithelial-mesenchymal transition. In vivo, siG12D LODER impeded the growth of human pancreatic tumor cells and prolonged mouse survival. We report a reproducible and safe delivery platform based on a miniature biodegradable polymeric matrix, for the controlled and prolonged delivery of siRNA. This technology provides the following advantages: (i) siRNA is protected from degradation; (ii) the siRNA is slowly released locally within the tumor for prolonged periods; and (iii) the siG12D LODER elicits a therapeutic effect, thereby demonstrating that mutated KRAS is indeed a druggable target.


Assuntos
Implantes Absorvíveis , Carcinoma Ductal Pancreático/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Proteínas ras/antagonistas & inibidores , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos SCID , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , RNA Interferente Pequeno/genética , Proteínas ras/genética , Proteínas ras/metabolismo
8.
Sci Rep ; 13(1): 16341, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770545

RESUMO

Image-guided radiofrequency ablation (RFA) is used to treat focal tumors in the liver and other organs. Despite potential advantages over surgery, hepatic RFA can promote local and distant tumor growth by activating pro-tumorigenic growth factor and cytokines. Thus, strategies to identify and suppress pro-oncogenic effects of RFA are urgently required to further improve the therapeutic effect. Here, the proliferative effect of plasma of Hepatocellular carcinoma or colorectal carcinoma patients 90 min post-RFA was tested on HCC cell lines, demonstrating significant cellular proliferation compared to baseline plasma. Multiplex ELISA screening demonstrated increased plasma pro-tumorigenic growth factors and cytokines including the FGF protein family which uniquely and selectively activated HepG2. Primary mouse and immortalized human hepatocytes were then subjected to moderate hyperthermia in-vitro, mimicking thermal stress induced during ablation in the peri-ablational normal tissue. Resultant culture medium induced proliferation of multiple cancer cell lines. Subsequent non-biased protein array revealed that these hepatocytes subjected to moderate hyperthermia also excrete a similar wide spectrum of growth factors. Recombinant FGF-2 activated multiple cell lines. FGFR inhibitor significantly reduced liver tumor load post-RFA in MDR2-KO inflammation-induced HCC mouse model. Thus, Liver RFA can induce tumorigenesis via the FGF signaling pathway, and its inhibition suppresses HCC development.


Assuntos
Carcinoma Hepatocelular , Ablação por Cateter , Hipertermia Induzida , Neoplasias Hepáticas , Ablação por Radiofrequência , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fatores de Crescimento de Fibroblastos , Ablação por Radiofrequência/efeitos adversos , Carcinogênese , Citocinas
9.
Bone Marrow Transplant ; 57(8): 1250-1259, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35538142

RESUMO

Mobilized peripheral blood cells (MPBCs) graft and peripheral blood cells apheresis are used for bone marrow transplantation and for treatment of graft versus host disease (GvHD). We demonstrate that a short treatment of MPBCs with Fas ligand (FasL, CD95L) for 2 h using a closed automated cell processing system selectively induces apoptosis of specific donor T cells, B cells and antigen presenting cells, but, critically, not CD34+ hematopoietic stem cells and progenitors, all of which may contribute to an increased likelihood of graft survival and functionality and reduced GvHD. Treated cells secreted lower levels of interferon-gamma as compared with control, untreated, cells. Moreover, FasL treatment of immune cells increased signals, which led to their phagocytosis by activated macrophages. FasL treated immune cells also reduced the ability of activated macrophages to secrete pro-inflammatory cytokines. Most importantly, FasL ex vivo treated MPBCs prior to transplantation in NOD-SCID NSG mice prevented GvHD and improved stem cell transplantation in vivo. In conclusion, MPBCs, as well as other blood cell products, treated with FasL by automated manufacturing (AM), may be used as potential treatments for conditions where the immune system is over-responding to both self and non-self-antigens.


Assuntos
Doença Enxerto-Hospedeiro , Animais , Células Sanguíneas , Proteína Ligante Fas , Doença Enxerto-Hospedeiro/prevenção & controle , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
10.
J Exp Clin Cancer Res ; 41(1): 97, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287686

RESUMO

BACKGROUND: Treatment of Diffuse Large B Cell Lymphoma (DLBCL) patients with rituximab and the CHOP treatment regimen is associated with frequent intrinsic and acquired resistance. However, treatment with a CD47 monoclonal antibody in combination with rituximab yielded high objective response rates in patients with relapsed/refractory DLBCL in a phase I trial. Here, we report on a new bispecific and fully human fusion protein comprising the extracellular domains of SIRPα and 4-1BBL, termed DSP107, for the treatment of DLBCL. DSP107 blocks the CD47:SIRPα 'don't eat me' signaling axis on phagocytes and promotes innate anticancer immunity. At the same time, CD47-specific binding of DSP107 enables activation of the costimulatory receptor 4-1BB on activated T cells, thereby, augmenting anticancer T cell immunity. METHODS: Using macrophages, polymorphonuclear neutrophils (PMNs), and T cells of healthy donors and DLBCL patients, DSP107-mediated reactivation of immune cells against B cell lymphoma cell lines and primary patient-derived blasts was studied with phagocytosis assays, T cell activation and cytotoxicity assays. DSP107 anticancer activity was further evaluated in a DLBCL xenograft mouse model and safety was evaluated in cynomolgus monkey. RESULTS: Treatment with DSP107 alone or in combination with rituximab significantly increased macrophage- and PMN-mediated phagocytosis and trogocytosis, respectively, of DLBCL cell lines and primary patient-derived blasts. Further, prolonged treatment of in vitro macrophage/cancer cell co-cultures with DSP107 and rituximab decreased cancer cell number by up to 85%. DSP107 treatment activated 4-1BB-mediated costimulatory signaling by HT1080.4-1BB reporter cells, which was strictly dependent on the SIRPα-mediated binding of DSP107 to CD47. In mixed cultures with CD47-expressing cancer cells, DSP107 augmented T cell cytotoxicity in vitro in an effector-to-target ratio-dependent manner. In mice with established SUDHL6 xenografts, the treatment with human PBMCs and DSP107 strongly reduced tumor size compared to treatment with PBMCs alone and increased the number of tumor-infiltrated T cells. Finally, DSP107 had an excellent safety profile in cynomolgus monkeys. CONCLUSIONS: DSP107 effectively (re)activated innate and adaptive anticancer immune responses and may be of therapeutic use alone and in combination with rituximab for the treatment of DLBCL patients.


Assuntos
Antígeno CD47/metabolismo , Imunidade Inata/imunologia , Receptores Imunológicos/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos
11.
Cancers (Basel) ; 13(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499244

RESUMO

The H19-derived microRNA-675 (miR-675) has been implicated as both tumor promoter and tumor suppressor and also plays a role in liver inflammation. We found that miR-675 promotes cell death in human hepatocellular carcinoma (HCC) cell lines. We show that Fas-associated protein with death domain (FADD), a mediator of apoptotic cell death signaling, is downregulated by miR-675 and a negative correlation exists between miR-675 and FADD expression in mouse models of HCC (p = 0.014) as well as in human samples (p = 0.017). We demonstrate in a mouse model of liver inflammation that overexpression of miR-675 promotes necroptosis, which can be inhibited by the necroptosis-specific inhibitor Nec-1/Nec-1s. miR-675 induces the level of both p-MLKL (Mixed Lineage Kinase Domain-Like Pseudokinase) and RIP3 (receptor-interacting protein 3), which are key signaling molecules in necroptosis, and enhances MLKL binding to RIP3. miR-675 also inhibits the levels of cleaved caspases 8 and 3, suggesting that miR-675 induces a shift from apoptosis to a necroptotic cellular pathway. In conclusion, downregulation of FADD by miR-675 promotes liver necroptosis in response to inflammatory signals. We propose that this regulation cascade can stimulate and enhance the inflammatory response in the liver, making miR-675 an important regulator in liver inflammation and potentially also in HCC.

12.
Hepatology ; 50(1): 198-206, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19441101

RESUMO

UNLABELLED: The current model for liver regeneration suggests that cell damage triggers Toll-like receptor (TLR) signaling via MyD88, leading to the induction of nuclear factor kappaB (NF-kappaB) and secretion of inflammatory cytokines that in turn prime liver regeneration. TLR3 is unique among TLRs in that it signals through TRIF (TIR domain-containing adaptor-inducing interferon-beta), not through MyD88, and may lead to activation of either the inflammatory or apoptotic pathway. The inflammatory pathway leads to NF-kappaB activation, whereas the apoptotic pathway, believed to be mediated by Rip3, leads to caspase-8 activation. In this study, we explored the role of TLR3 in liver regeneration by comparing the response to 70% partial hepatectomy of TLR3(wt) and TLR3(-/-) mice. We found that following partial hepatectomy, TLR3(-/-) mice demonstrated earlier hepatocyte proliferation. Furthermore, within the first hours, we observed a dramatic TLR3-dependent NF-kappaB activation and an increase in Rip3 levels in hepatocytes, accompanied by caspase-8 activation but without an apoptotic outcome. CONCLUSION: TLR3 plays an inhibitory role in the priming of liver regeneration, thus reinforcing the role of the innate immune system in balancing tissue regeneration.


Assuntos
Regeneração Hepática/fisiologia , Receptor 3 Toll-Like/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
13.
Oncotarget ; 6(37): 39564-77, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26416413

RESUMO

The distribution of drugs within solid tumors presents a long-standing barrier for efficient cancer therapies. Tumors are highly resistant to diffusion, and the lack of blood and lymphatic flows suppresses convection. Prolonged, continuous intratumoral drug delivery from a miniature drug source offers an alternative to both systemic delivery and intratumoral injection. Presented here is a model of drug distribution from such a source, in a multistep process. At delivery onset the drug mainly affects the closest surroundings. Such 'priming' enables drug penetration to successive cell layers. Tumor 'void volume' (volume not occupied by cells) increases, facilitating lymphatic perfusion. The drug is then transported by hydraulic convection downstream along interstitial fluid pressure (IFP) gradients, away from the tumor core. After a week tumor cell death occurs throughout the entire tumor and IFP gradients are flattened. Then, the drug is transported mainly by 'mixing', powered by physiological bulk body movements. Steady state is achieved and the drug covers the entire tumor over several months. Supporting measurements are provided from the LODER system, releasing siRNA against mutated KRAS over months in pancreatic cancer in-vivo models. LODER was also successfully employed in a recent Phase 1/2 clinical trial with pancreatic cancer patients.


Assuntos
Algoritmos , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Modelos Biológicos , Neoplasias/metabolismo , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Transporte Biológico , Ensaios Clínicos como Assunto , Convecção , Difusão , Humanos , Injeções Intralesionais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacocinética , Fatores de Tempo , Distribuição Tecidual
14.
Oncotarget ; 6(27): 24560-70, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26009994

RESUMO

PURPOSE: The miniature biodegradable implant siG12D-LODER™ was inserted into a tumor and released a siRNA drug against KRAS(G12D) along four months. This novel siRNA based drug was studied, in combination with chemotherapy, as targeted therapy for Locally Advanced Pancreatic Cancer (LAPC). METHODS: An open-label Phase 1/2a study in the first-line setting of patients with non-operable LAPC was initiated. In this study patients were assigned to receive a single dose of siG12D-LODERs, in three escalating dose cohorts (0.025mg, 0.75mg and 3.0mg). Gemcitabine was given on a weekly basis, following the siG12D-LODERTM insertion, until disease progression. The recommended dose was further examined with modified FOLFIRINOX. The follow up period was eight weeks and survival until death. RESULTS: Fifteen patients with LAPC were enrolled. Among the 15 treated patients, the most frequent adverse events observed were grade 1or 2 in severity (89%); five patients experienced serious adverse events (SAEs). In 12 patients analyzed by CT scans, none showed tumor progression, the majority (10/12) demonstrated stable disease and two showed partial response. Decrease in tumor marker CA19-9 was observed in 70% (7/10) of patients. Median overall survival was 15.12 months; 18 month survival was 38.5%. CONCLUSIONS: The combination of siG12D-LODER™ and chemotherapy is well tolerated, safe and demonstrated a potential efficacy in patients with LAPC. NCT01188785.


Assuntos
Carcinoma Ductal Pancreático/terapia , Implantes de Medicamento , Terapia de Alvo Molecular , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , RNA Interferente Pequeno , Terapêutica com RNAi/métodos , Implantes Absorvíveis , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/sangue , Antineoplásicos/uso terapêutico , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Intervalo Livre de Doença , Feminino , Fluoruracila/uso terapêutico , Humanos , Irinotecano , Leucovorina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Gencitabina
15.
PLoS One ; 4(10): e7511, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19841744

RESUMO

BACKGROUND AND AIMS: microRNAs (miRNAs) are small noncoding RNAs that regulate cognate mRNAs post-transcriptionally. miRNAs have been implicated in regulating gene expression in embryonic developmental processes, including proliferation and differentiation. The liver is a multifunctional organ, which undergoes rapid changes during the developmental period and relies on tightly-regulated gene expression. Little is known regarding the complex expression patterns of both mRNAs and miRNAs during the early stages of human liver development, and the role of miRNAs in the regulation of this process has not been studied. The aim of this work was to study the impact of miRNAs on gene expression during early human liver development. METHODS: Global gene and miRNA expression were profiled in adult and in 9-12w human embryonic livers, using high-density microarrays and quantitative RT-PCR. RESULTS: Embryonic liver samples exhibited a gene expression profile that differentiated upon progression in the developmental process, and revealed multiple regulated genes. miRNA expression profiling revealed four major expression patterns that correlated with the known function of regulated miRNAs. Comparison of the expression of the most regulated miRNAs to that of their putative targets using a novel algorithm revealed a significant anti-correlation for several miRNAs, and identified the most active miRNAs in embryonic and in adult liver. Furthermore, our algorithm facilitated the identification of TGFbeta-R1 as a novel target gene of let-7. CONCLUSIONS: Our results uncover multiple regulated miRNAs and genes throughout human liver development, and our algorithm assists in identification of novel miRNA targets with potential roles in liver development.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fígado/embriologia , Fígado/metabolismo , MicroRNAs/genética , Algoritmos , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Hepatócitos/metabolismo , Humanos , Fígado/crescimento & desenvolvimento , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/biossíntese , RNA Mensageiro/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Cell Biochem ; 100(5): 1301-12, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17243100

RESUMO

Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPS) leading to the activation of the innate immune response and subsequently to the shaping of the adaptive immune response. Of the known human TLRs, TLR3, 7, 8, and 9 were shown to recognize nucleic acid ligands. TLR3 signaling is induced by double-stranded (ds)RNA, a molecular signature of viruses, and is mediated by the TRIF (TIR domain-containing adaptor-inducing IFNbeta) adaptor molecule. Thus, TLR3 plays an important role in the host response to viral infections. The liver is constantly exposed to a large variety of foreign substances, including pathogens such as HBV (hepatitis B virus) and HCV (hepatitis C virus), which frequently establish persistent liver infections. In this work, we investigated the expression and signaling pathway of TLR3 in different hepatoma cell lines. We show that hepatocyte lineage cells express relatively low levels of TLR3 mRNA. TLR3 signaling in HEK293 cells (human embryonic kidney cells) activated NF-kappaB and IRF3 (interferon regulatory factor 3) and induced IFNbeta (interferon beta) promoter expression, which are known to lead to pro-inflammatory cytokine secretion. In Huh7 cells, there was only a short-term IRF3 activation, and a very low level of IFNbeta expression. In HepG2 cells on the other hand, while no induction of pro-inflammatory factors was observed, signaling by TLR3 was skewed towards the induction of apoptosis. These results indicate preferential induction of the apoptotic pathway over the cytokine induction pathway by TLR3 signaling in hepatocellular carcinoma cells with potential implications for therapeutic strategies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apoptose/fisiologia , Fator Regulador 3 de Interferon/metabolismo , NF-kappa B/metabolismo , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Cultivadas , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citometria de Fluxo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fator Regulador 3 de Interferon/genética , Rim/metabolismo , Rim/patologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Luciferases , NF-kappa B/genética , Plasmídeos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA