Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 33(3): 307-321, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28064403

RESUMO

The existence of a well-established drug resistance mechanism in cancer stem cells (CSC) complicates the cancer treatment. Clusterin (CLU) plays a key role in maintaining the integrity of endoplasmic reticulum (ER) during drug-induced stress. Hence, silencing the CLU could significantly reduce the inherent drug resistance mechanism of CSC. The combination of drug-induced cytotoxicity, as well as the suppression of drug resistance in CSC, could circumvent the recurrence capability of the tumor. In the present study, camptothecin (CPT)-induced apoptosis and necrosis in CSC with and without siCLU treatment were simultaneously measured using Qdot-based total internal reflection fluorescence microscope (TIRF). In addition, to elucidate the mechanism of CPT-induced cytotoxicity in CLU-suppressed CSC, expression of Bcl-2, Bax, Bak, and PARP and mitochondrial permeability transition pore (MPTP) were studied. EC50 values of CPT-induced apoptosis and necrosis were significantly reduced (p < 0.01) in CLU-suppressed MCF-7 and CSC. Significantly increased MPTP (p < 0.001) and cytosolic Ca2+ (p < 0.001) were observed in CPT-treated CLU-suppressed CSC as compared to the normal CSC. Elevated expression of Bax, Bak, and cleaved PARP and reduced expression of Bcl-2 and cytosolic ATP were observed in CPT-treated CLU-suppressed CSC. Observed results indicate that silencing the expression of CLU could improve the anticancer efficacy of CPT at 128.4-nM concentration by equally inducing necrotic signals along with apoptosis. Furthermore, the developed high content TIRF assay based on the CLU-suppressed CSC could be an ideal and beneficial tool for rapidly analyzing the cytotoxicity of anti-cancer agents.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/farmacologia , Clusterina/genética , Dinâmica Mitocondrial/genética , Necrose/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/genética , Poro de Transição de Permeabilidade Mitocondrial
2.
Anal Bioanal Chem ; 408(12): 3233-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26886741

RESUMO

Elevated expression of epidermal growth factor receptor (EGFR) is reported to be associated with poor prognosis in breast cancer. EGFR subtype identification plays a crucial role in deciding the drug combination to treat the cancer patients. Conventional application of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) produces more discordance results in EGFR subtype identification of cancer specimens. The present study is designed to develop an analytical method for simultaneous identification of cell surface biomarkers and quantitative estimation of drug efficacy in cancer specimens. For this study, we have utilized a total internal reflection fluorescence microscope (TIRFM), Qdot molecular probes and chemotherapeutic agent camptothecin (CPT)-treated breast cancer cell lines namely MCF-7, SK-BR-3 and JIMT-1. Highly sensitive detection signals with low background noise generated from the evanescent field excitation of TIRFM make it a highly suitable tool to detect the cell surface biomarkers in living cells. Moreover, single wavelength excitation of Qdot probes offers multicolour imaging with strong emission brightness. In the present study, TIRF high-content imaging system simultaneously showed the expression pattern of EGFRs and EC50 value for CPT-induced apoptosis and necrosis in MCF-7, SK-BR-3 and JIMT-1 cancer cell lines.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptores ErbB/metabolismo , Genes erbB-2 , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos
3.
J Biophotonics ; 10(1): 118-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26768511

RESUMO

We report a two color monitoring of drug-induced cell deaths using total internal reflection fluorescence (TIRF) as a novel method to determine anticancer activity. Instead of cancer cells, breast cancer stem cells (CSCs) were directly tested in the present assay to determine the effective concentration (EC50 ) values of camptothecin and cisplatin. Phosphatidylserine and HMGB1 protein were concurrently detected to observe apoptotic and necrotic cell death induced by anticancer drugs using quantum dot (Qdot)-antibody conjugates. Only 50-to-100 breast CSCs were consumed at each cell chamber due to the high sensitivity of Qdot-based TIRF. The high sensitivity of Qdot-based TIRF, that enables the consumption of a small number of cells, is advantageous for cost-effective large-scale drug screening. In addition, unlike MTT assay, this approach can provide a more uniform range of EC50 values because the average values of single breast CSCs fluorescence intensities are observed to acquire EC50 values as a function of dose. This research successfully demonstrated the possibility that Qdot-based TIRF can be widely used as an improved alternative to MTT assay for the determination of anticancer drug efficacies.


Assuntos
Morte Celular , Microscopia de Fluorescência , Células-Tronco Neoplásicas/citologia , Pontos Quânticos , Neoplasias da Mama/tratamento farmacológico , Camptotecina/farmacologia , Cisplatino/farmacologia , Humanos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA