Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 126(8): 1977-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23715938

RESUMO

Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, causes chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempt to fine map and further characterize it. Here, gamma radiation treatment was used to create artificial diversity for this locus. A total of 696 radiation hybrid lines were genotyped with a custom mini array of 140 DArT markers, selected to evenly span the whole 3B chromosome. The resulting map spanned 2,852 centi Ray with a calculated resolution of 0.384 Mb. Phenotyping for the occurrence of meiotic desynapsis was conducted by measuring the level of gametic sterility as seeds produced per spikelet and pollen viability at booting. Composite interval mapping revealed a single QTL with LOD of 16.2 and r (2) of 25.6 % between markers wmc326 and wPt-8983 on the long arm of chromosome 3B. By independent analysis, the location of the QTL was confirmed to be within the deletion bin 3BL7-0.63-1.00 and to correspond to a single gene located ~1.4 Mb away from wPt-8983. The meiotic behavior of lines lacking this gene was characterized cytogenetically to reveal striking similarities with mutants for the dy locus, located on the syntenic chromosome 3 of maize. This represents the first example to date of employing radiation hybrids for QTL analysis. The success achieved by this approach provides an ideal starting point for the final cloning of this interesting gene involved in meiosis of cereals.


Assuntos
Infertilidade das Plantas/genética , Infertilidade das Plantas/efeitos da radiação , Mapeamento de Híbridos Radioativos , Triticum/genética , Triticum/efeitos da radiação , Cromossomos de Plantas/genética , Variação Genética/efeitos da radiação , Genótipo , Meiose/genética , Plantas Geneticamente Modificadas/efeitos da radiação , Sementes/genética , Sementes/efeitos da radiação , Deleção de Sequência/genética , Deleção de Sequência/efeitos da radiação
2.
Cytogenet Genome Res ; 129(1-3): 234-40, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20501975

RESUMO

Radiation hybrid (RH) mapping is based on radiation-induced chromosome breakage rather than meiotic recombination, as a means to induce marker segregation for mapping. To date, the implementation of this mapping approach in hexaploid (Triticum aestivum L.; 2n = 6x = 42; AABBDD) and tetraploid (T. turgidum L.; 2n = 4x = 28; AABB) wheat has concentrated on the production of mapping panels for individual chromosomes. In order to extend the usefulness of this approach, we have devised a method to produce panels for the simultaneous mapping of all chromosomes of the D subgenome of hexaploid wheat. In this approach, seeds of hexaploid wheat (AABBDD) are irradiated and the surviving plants are crossed to tetraploid wheat (AABB) to produce a mapping panel based on quasi-pentaploids (AABBD). Chromosome lesions in the A and B genomes are largely masked in the quasi-pentaploids due to the presence of A- and B-genome chromosomes from the tetraploid parent. On the other hand, the chromosomes from the D-genome are present in one copy (hemizygous) and allow radiation hybrid mapping of all D-genome chromosomes simultaneously. Our analyses showed that transmission of D-genome chromosomes was apparently normal and that radiation-induced chromosome breakage along D-genome chromosomes was homogeneous. Chromosome breakage levels between D-genome chromosomes were comparable except for chromosome 6D which suffered greater chromosome breakage. These results demonstrate the feasibility of constructing D-genome radiation hybrids (DGRHs) in wheat.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Mapeamento de Híbridos Radioativos/métodos , Triticum/genética , Quebra Cromossômica , Cromossomos de Plantas/efeitos da radiação , Cruzamentos Genéticos , DNA de Plantas/genética , Raios gama , Marcadores Genéticos , Poliploidia , Triticum/efeitos da radiação
3.
Cytogenet Genome Res ; 120(3-4): 233-40, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18504352

RESUMO

Radiation hybrid (RH) and HAPPY mapping are two technologies used in animal systems that have attracted the attention of the plant genetics community because they bridge the resolution gap between meiotic and BAC-based physical mapping that would facilitate the analysis of plant species lacking substantial genomics resources. Research has shown that the essence of these approaches can be applied and that a variety of strategies can be used to produce mapping panels. Mapping panels composed of live plants, protoplast fusion cultures, and sub-genomic DNA samples have been described. The resolution achievable by RH mapping panels involving live-plant derivatives of a monosomic maize (Zea mays) chromosome 9 addition in allohexaploid oat (Avena sativa), a monosomic chromosome 1D addition in allotetraploid durum wheat (Triticum turgidum), and interspecific hybrids between two tetraploid cotton species (G. hirsutum and G. barbadense), has been estimated to range from 0.6 to 6 Mb. On the other hand, a more comprehensive evaluation of one panel from durum wheat suggests that a higher mapping resolution (approximately 200 kb) is possible. In cases involving RH mapping panels based on barley (Hordeum vulgare)-tobacco (Nicotiana tabacum) protoplast fusions or a HAPPY mapping panel based on genomic DNA from Arabidopsis thaliana, the potential mapping resolution appears to be higher (50 to 200 kb). Despite these encouraging results, the application of either RH or HAPPY mapping in plants is still in the experimental phase and additional work is clearly needed before these methods are more routinely utilized.


Assuntos
Mapeamento Físico do Cromossomo/métodos , Plantas/genética , Mapeamento de Híbridos Radioativos/métodos , Citogenética , DNA de Plantas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética , Ploidias
4.
Phytopathology ; 96(8): 885-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18943754

RESUMO

ABSTRACT Race 3 of the fungus Pyrenophora tritici-repentis, causal agent of tan spot, induces differential symptoms in tetraploid and hexaploid wheat, causing necrosis and chlorosis, respectively. This study was conducted to examine the genetic control of resistance to necrosis induced by P. tritici-repentis race 3 and to map resistance genes identified in tetraploid wheat (Triticum turgidum). A mapping population of recombinant inbred lines (RILs) was developed from a cross between the resistant genotype T. tur-gidum no. 283 (PI 352519) and the susceptible durum cv. Coulter. Based on the reactions of the Langdon-T. dicoccoides (LDN[DIC]) disomic substitution lines, chromosomal location of the resistance genes was determined and further molecular mapping of the resistance genes for race 3 was conducted in 80 RILs of the cross T. turgidum no. 283/Coulter. Plants were inoculated at the two-leaf stage and disease reaction was assessed 8 days after inoculation based on lesion type. Disease reaction of the LDN(DIC) lines and molecular mapping on the T. turgidum no. 283/Coulter population indicated that the gene, designated tsn2, conditioning resistance to race 3 is located on the long arm of chromosome 3B. Genetic analysis of the F(2) generation and of the F(4:5) and F(6:7) families indicated that a single recessive gene controlled resistance to necrosis induced by race 3 in the cross studied.

5.
Plant Genome ; 9(1)2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27898771

RESUMO

Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414566), was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP) markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL) and width (KW) are genetically independent, while a large number (∼59%) of the quantitative trait loci (QTL) for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A) and (7A) genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools.


Assuntos
Genes de Plantas/genética , Ligação Genética , Sementes/anatomia & histologia , Sementes/genética , Triticum/anatomia & histologia , Triticum/genética , Mapeamento Cromossômico , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
6.
Genetics ; 168(2): 609-23, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514039

RESUMO

A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Oryza/genética , Ploidias , Triticum/genética , Genes de Plantas , Genoma de Planta , Alinhamento de Sequência
7.
Genetics ; 168(2): 639-50, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514041

RESUMO

The focus of this study was to analyze the content, distribution, and comparative genome relationships of 996 chromosome bin-mapped expressed sequence tags (ESTs) accounting for 2266 restriction fragments (loci) on the homoeologous group 3 chromosomes of hexaploid wheat (Triticum aestivum L.). Of these loci, 634, 884, and 748 were mapped on chromosomes 3A, 3B, and 3D, respectively. The individual chromosome bin maps revealed bins with a high density of mapped ESTs in the distal region and bins of low density in the proximal region of the chromosome arms, with the exception of 3DS and 3DL. These distributions were more localized on the higher-resolution group 3 consensus map with intermediate regions of high-mapped-EST density on both chromosome arms. Gene ontology (GO) classification of mapped ESTs was not significantly different for homoeologous group 3 chromosomes compared to the other groups. A combined analysis of the individual bin maps using 537 of the mapped ESTs revealed rearrangements between the group 3 chromosomes. Approximately 232 (44%) of the consensus mapped ESTs matched sequences on rice chromosome 1 and revealed large- and small-scale differences in gene order. Of the group 3 mapped EST unigenes approximately 21 and 32% matched the Arabidopsis coding regions and proteins, respectively, but no chromosome-level gene order conservation was detected.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Genoma de Planta , Alinhamento de Sequência
8.
Genetics ; 168(2): 625-37, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514040

RESUMO

The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Genoma de Planta , Ploidias , Alinhamento de Sequência
9.
Genetics ; 168(2): 677-86, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514044

RESUMO

To localize wheat (Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific ESTs were identified by physically mapping 7965 singletons from 37 cDNA libraries on 146 chromosome, arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions (bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043 (loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6 bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes. These rice-block contigs were used to resolve the order of wheat ESTs within each bin.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Deleção de Genes , Genes de Plantas , Triticum/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genoma de Planta , Alinhamento de Sequência
10.
Genetics ; 168(2): 665-76, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514043

RESUMO

We constructed high-density deletion bin maps of wheat chromosomes 5A, 5B, and 5D, including 2338 loci mapped with 1052 EST probes and 217 previously mapped loci (total 2555 loci). This information was combined to construct a consensus chromosome bin map of group 5 including 24 bins. A relatively higher number of loci were mapped on chromosome 5B (38%) compared to 5A (34%) and 5D (28%). Differences in the levels of polymorphism among the three chromosomes were partially responsible for these differences. A higher number of duplicated loci was found on chromosome 5B (42%). Three times more loci were mapped on the long arms than on the short arms, and a significantly higher number of probes, loci, and duplicated loci were mapped on the distal halves than on the proximal halves of the chromosome arms. Good overall colinearity was observed among the three homoeologous group 5 chromosomes, except for the previously known 5AL/4AL translocation and a putative small pericentric inversion in chromosome 5A. Statistically significant colinearity was observed between low-copy-number ESTs from wheat homoeologous group 5 and rice chromosomes 12 (88 ESTs), 9 (72 ESTs), and 3 (84 ESTs).


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Etiquetas de Sequências Expressas , Genoma de Planta , Alinhamento de Sequência
11.
Genetics ; 168(2): 585-93, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514037

RESUMO

This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5' and 3' sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.


Assuntos
Mapeamento Cromossômico , Biologia Computacional , Mapeamento de Sequências Contíguas , Etiquetas de Sequências Expressas/química , Deleção de Genes , Triticum/genética , Southern Blotting , Sondas de DNA , Biblioteca Gênica
12.
Genetics ; 168(2): 595-608, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514038

RESUMO

A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.), diploid wheat (T. monococcum L.), and two other diploid members of the grass tribe Triticeae (Aegilops speltoides Tausch and Secale cereale L.). The emphasis in the choice of plant materials for library construction was reproductive development subjected to environmental factors that ultimately affect grain quality and yield, but roots and other tissues were also included. Partial cDNA expressed sequence tags (ESTs) were examined by various measures to assess the quality of these libraries. All ESTs were processed to remove cloning system sequences and contaminants and then assembled using CAP3. Following these processing steps, this assembly yielded 101,107 sequences derived from 89,043 clones, which defined 16,740 contigs and 33,213 singletons, a total of 49,953 "unigenes." Analysis of the distribution of these unigenes among the libraries led to the conclusion that the enrichment methods were effective in reducing the most abundant unigenes and to the observation that the most diverse libraries were from tissues exposed to environmental stresses including heat, drought, salinity, or low temperature.


Assuntos
Etiquetas de Sequências Expressas/química , Biblioteca Gênica , Triticum/genética , Vetores Genéticos , Análise de Sequência de DNA , Técnica de Subtração
13.
Genetics ; 168(2): 651-63, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514042

RESUMO

A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4 chromosomes; 41, 28, and 31% mapped to chromosomes 4A, 4B, and 4D, respectively. This pattern is in contrast to the cumulative results of EST mapping in all homoeologous groups, as reported elsewhere, that found the highest proportion of loci mapped to the B genome. Sixty-five percent of these 1918 loci mapped to the long arms of homoeologous group 4 chromosomes, while 35% mapped to the short arms. The distal regions of chromosome arms showed higher numbers of loci than the proximal regions, with the exception of 4DL. This study confirmed the complex structure of chromosome 4A that contains two reciprocal translocations and two inversions, previously identified. An additional inversion in the centromeric region of 4A was revealed. A consensus map for homoeologous group 4 was developed from 119 ESTs unique to group 4. Forty-nine percent of these ESTs were found to be homoeologous to sequences on rice chromosome 3, 12% had matches with sequences on other rice chromosomes, and 39% had no matches with rice sequences at all. Limited homology (only 26 of the 119 consensus ESTs) was found between wheat ESTs on homoeologous group 4 and the Arabidopsis genome. Forty-two percent of the homoeologous group 4 ESTs could be classified into functional categories on the basis of blastX searches against all protein databases.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Triticum/genética , Deleção de Genes , Duplicação Gênica , Biblioteca Gênica , Genoma de Planta
14.
Genetics ; 168(2): 687-99, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514045

RESUMO

The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Triticum/genética , Deleção de Genes , Duplicação Gênica , Marcadores Genéticos , Genoma de Planta , Hordeum/genética , Oryza/genética , Alinhamento de Sequência
15.
Genetics ; 168(2): 701-12, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514046

RESUMO

Because of the huge size of the common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and deletion stocks. Each EST detected a mean of 4.8 restriction fragments and 2.8 loci. More loci were mapped in the B genome (5774) than in the A (5173) or D (5146) genomes. The EST density was significantly higher for the D genome than for the A or B. In general, EST density increased relative to the physical distance from the centromere. The majority of EST-dense regions are in the distal parts of chromosomes. Most of the agronomically important genes are located in EST-dense regions. The chromosome bin map of ESTs is a unique resource for SNP analysis, comparative mapping, structural and functional analysis, and polyploid evolution, as well as providing a framework for constructing a sequence-ready, BAC-contig map of the wheat genome.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Genoma de Planta , Triticum/genética , Marcadores Genéticos , Ploidias , Locos de Características Quantitativas , Alinhamento de Sequência
16.
Heredity (Edinb) ; 96(1): 93-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16189540

RESUMO

Seed dormancy is a key adaptive trait under polygenic control in many plants. We introduced the chromosomal regions containing the dormancy QTLs qSD1, qSD7-1, and qSD12 from an accession of weedy rice into a nondormant genetic background to examine component genetic effects and their interactions with time of afterripening (DAR). A BC4F2 plant, which was heterozygous for the three loci, was selected to develop the BC4F3 population. Single point analysis detected only qSD7-1 and qSD12 (R2 = 38-72%) at 10, 30, and 50 DAR in the population. However, multiple linear regression analysis detected genetic effects of the three QTLs and their trigenic epistasis, an environmental effect of DAR (E), and interactions of E with qSD12 and with the qSD1 x qSD7-1 and qSD7-1 x qSD12 epistases. The linear model demonstrates that QTL main effects varied with DAR, and that some epistasis or epistasis-by-DAR interactions partially counteract the main effects. The three QTLs were isolated as single Mendelian factors from the BC4F3 population and estimated for component genic effects based on the BC4F4 populations. Isolation improved estimation of the qSD1 effect and confirmed the major effect of qSD12. The qSD1 and qSD12 loci displayed a gene-additive effect. The qSD7-1, which was further narrowed to a chromosomal region encompassing the red pericarp color gene Rc, displayed gene additive and dominant effects.


Assuntos
Padrões de Herança , Oryza/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Adaptação Fisiológica , Cor , Genética Populacional , Oryza/fisiologia , Análise de Regressão
17.
Genome ; 49(5): 531-44, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16767178

RESUMO

The US Wheat Genome Project, funded by the National Science Foundation, developed the first large public Triticeae expressed sequence tag (EST) resource. Altogether, 116,272 ESTs were produced, comprising 100,674 5' ESTs and 15 598 3' ESTs. These ESTs were derived from 42 cDNA libraries, which were created from hexaploid bread wheat (Triticum aestivum L.) and its close relatives, including diploid wheat (T. monococcum L. and Aegilops speltoides L.), tetraploid wheat (T. turgidum L.), and rye (Secale cereale L.), using tissues collected from various stages of plant growth and development and under diverse regimes of abiotic and biotic stress treatments. ESTs were assembled into 18,876 contigs and 23,034 singletons, or 41,910 wheat unigenes. Over 90% of the contigs contained fewer than 10 EST members, implying that the ESTs represented a diverse selection of genes and that genes expressed at low and moderate to high levels were well sampled. Statistical methods were used to study the correlation of gene expression patterns, based on the ESTs clustered in the 1536 contigs that contained at least 10 5' EST members and thus representing the most abundant genes expressed in wheat. Analysis further identified genes in wheat that were significantly upregulated (p < 0.05) in tissues under various abiotic stresses when compared with control tissues. Though the function annotation cannot be assigned for many of these genes, it is likely that they play a role associated with the stress response. This study predicted the possible functionality for 4% of total wheat unigenes, which leaves the remaining 96% with their functional roles and expression patterns largely unknown. Nonetheless, the EST data generated in this project provide a diverse and rich source for gene discovery in wheat.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Triticum/genética , Triticum/metabolismo , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Coleta de Dados , Bases de Dados Genéticas , Biblioteca Gênica , Genes de Plantas , Filogenia , Poliploidia , Distribuição Tecidual , Triticum/crescimento & desenvolvimento
18.
J Hered ; 96(4): 404-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15843637

RESUMO

The action of species cytoplasm specific (scs) gene(s) can be observed when a durum (Triticum turgidum L.) nucleus is placed in the Aegilops longissimum S. & M. cytoplasm. This alloplasmic combination, (lo) durum, results in nonviable progeny. A scs gene derived from T. timopheevii Zhuk. (scs(ti)) produced compatibility with the (lo) cytoplasm. The resulting hemizygous (lo) scs(ti)- durum line was male sterile and when crossed to normal durum produced a 1:1 ratio of plump, viable (PV) seeds with scs(ti) and shriveled inviable (SIV) seeds without scs(ti). In a systematic characterization of durum lines an unusual line was identified that when crossed to (lo) scs(ti)- produced all PV seeds. When planted these PV seeds segregated at a 1:1 ratio of normal vigor plants (NVPs) and low vigor plants (LVPs). The LVP senescence before full maturity. The NVPs were male sterile and when crossed to common durum lines resulted in all plump seeds that again segregated at a 1:1 ratio of NVPs to LVPs. The crosses of these NVPs to common durum lines resulted in a 1:1 ratio of PV to SIV seeds. This study was extended to 317 individuals segregating for scs(ti) and the new locus, derived from durum wheat (scs(d)), establishing the allelic relationship of these two genes.


Assuntos
Genes de Plantas/genética , Triticum/genética , Cruzamentos Genéticos , Citoplasma/genética , Vigor Híbrido
19.
Theor Appl Genet ; 84(5-6): 544-54, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24201339

RESUMO

A composite linkage map of Brassica oleracea was developed from maps of four different populations, derived from 108 DNA, isozyme and morphological loci covering over 747 centimorgans in 11 linkage groups. Of these linkage groups, 8 were assigned to their respective chromosomes by alignment with gene synteny groups of B. oleracea. Distortions in segregation ratios increased with the level of divergence of the parents and were attributed to differentiation of parental chromosomes. Comparison of the individual maps demonstrates that the B. oleracea genome undergoes frequent chromosomal rearrangement, even at the subspecies level. Small inversions were the most frequent form of aberration followed by translocations. The former type of aberration could occur without a noticeable effect on meiotic behavior of chromosomes or on pollen fertility. The obvious deduction from the composite map is that a large fraction of the B. oleracea genome is duplicated, falling into three classes: randomly dispersed, linked-gene families, and blocks duplicated in non-homologous chromosomes. The genealogy of chromosomes sharing duplicated segments was formulated and indicates that B. oleracea is a secondary polyploid species derived from ancestral genome(s) of fewer chromosomes.

20.
Theor Appl Genet ; 74(6): 758-66, 1987 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24240337

RESUMO

This study aimed at generating chromosome addition lines and disclosing genome specific markers in Brassica. These stocks will be used to study genome evolution in Brassica oleracea L., B. campestris L. and the derived amphidiploid species B. napus L. B. campestris-oleracea monosomic and disomic chromosome addition plants were generated by crossing and backcrossing the natural amphidiploid B. napus to the diploid parental species B. campestris. The pollen viability of the derived sesquidiploid and hyperploid ranged from 63% to 88%, while the monosomic and disomic addition plants had an average pollen fertility of 94% and 91%, respectively. The addition lines were genetically characterized by genome specific markers. The isozymes for 6PGD, LAP, PGI and PGM, and rDNA Eco RI restriction fragments were found to possess the desired genome specificity. Duplicated loci for several of these markers were observed in B. campestris and B. oleracea, supporting the hypothesis that these diploid species are actually secondary polyploids. A total of eight monosomic and eight disomic addition plants were identified and characterized on the basis of these markers. Another 51 plants remained uncharacterized due to the lack of additional markers. rDNA genes were found to be distributed in more than one chromosome, differing in its restriction sites. Intergenomic recombination for some of the markers was detected at frequencies between 6% and 20%, revealing the feasibility of intergenomic gene transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA