Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 130(9): 094703, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19275414

RESUMO

The authors present organic photovoltaic (OPV) devices comprising a small molecule electron acceptor based on 2-vinyl-4,5-dicyanoimidazole (Vinazene) and a soluble poly(p-phenylenevinylene) derivative as the electron donor. A strong dependence of the fill factor (FF) and the external quantum efficiency [incident photons converted to electrons (IPCE)] on the heterojunction topology is observed. As-prepared blends provided relatively low FF and IPCE values of 26% and 4.5%, respectively, which are attributed to significant recombination of geminate pairs and free carriers in a highly intermixed blend morphology. Going to an all-solution processed bilayer device, the FF and IPCE dramatically increased to 43% and 27%, respectively. The FF increases further to 57% in devices comprising thermally deposited Vinazene layers where there is virtually no interpenetration at the donor/acceptor interface. This very high FF is comparable to values reported for OPV using fullerenes as the electron acceptor. Furthermore, the rather low electron affinity of Vinazene compound near 3.5 eV enabled a technologically important open circuit voltage (V(oc)) of 1.0 V.

2.
Small ; 3(6): 1041-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17480045

RESUMO

Polymer blends in nanoparticles have been studied by transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. The TEM studies show that blend particles formed from two immiscible polymers by the miniemulsion process exhibit biphasic morphologies. The fact that no core-shell type but Janus-like structures were found indicates that the surface free energies between both polymers and the solution-water interface (including the surfactant molecules) are similar; therefore, the blend morphology and composition of the individual phases are mainly determined by the interaction between the two polymer components. Both the TEM studies and the PL experiments provide strong evidence that phase separation in these particles strictly follows the Flory-Huggins theory. This highlights the applicability of the nanoparticle approach to fabricate blend systems with well-controllable properties and to study structure-property relationships under well-defined conditions.


Assuntos
Nanopartículas/química , Polímeros/química , Luminescência , Microscopia Eletrônica de Transmissão , Análise Espectral
3.
Nat Mater ; 2(6): 408-12, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12738959

RESUMO

Polymer layers can exhibit significantly improved performances if they possess a multicomponent phase-separated morphology. We present two approaches to control the dimensions of phase separation in thin polymer-blend layers; both rely on polymer nanospheres prepared by the miniemulsion process. In the first approach, heterophase solid layers are prepared from an aqueous dispersion containing nanoparticles of two polymers, whereas in the second approach, both polymers are already contained in each individual nanoparticle. In both cases, the upper limit for the dimension of phase separation is determined by the size of the individual nanoparticles, which can be adjusted down to a few tens of nanometres. We also show that the efficiencies of solar cells using two-component particles are comparable to those of devices prepared from solution at comparable illumination conditions, and that they are not affected by the choice of solvent used in the miniemulsion process.


Assuntos
Emulsões/química , Microquímica/métodos , Microesferas , Nanotecnologia/métodos , Polímeros/química , Fontes de Energia Elétrica , Transferência de Energia , Substâncias Macromoleculares , Teste de Materiais/métodos , Microscopia de Força Atômica , Conformação Molecular , Tamanho da Partícula , Energia Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA