Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687026

RESUMO

A wastewater treatment system has been established based on sulfate-reducing and sulfide-oxidizing processes for treating organic wastewater containing high sulfate/sulfide. The influence of COD/SO42- ratio and hydraulic retention time (HRT) on removal efficiencies of sulfate, COD, sulfide and electricity generation was investigated. The continuous operation of the treatment system was carried out for 63 days with the optimum COD/SO42- ratio and HRT. The result showed that the COD and sulfate removal efficiencies were stable, reaching 94.8 ± 0.6 and 93.0 ± 1.3% during the operation. A power density level of 18.0 ± 1.6 mW/m2 was obtained with a sulfide removal efficiency of 93.0 ± 1.2%. However, the sulfide removal efficiency and power density decreased gradually after 45 days. The results from scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) show that sulfur accumulated on the anode, which could explain the decline in sulfide oxidation and electricity generation. This study provides a promising treatment system to scale up for its actual applications in this type of wastewater.

2.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687145

RESUMO

Microbial fuel cells are one of the alternative methods that generate green, renewable sources of energy from wastewater. In this study, a new bio-electrochemical system called the sulfide-oxidizing fuel cell (SOFC) is developed for the simultaneous removal of sulfide/sulfide and electricity generation. To improve the application capacity of the SOFC, a system combining sulfate-reducing and sulfide-oxidizing processes for sulfate/sulfide removal and electricity generation was designed. Key factors influencing the sulfide-removal efficiency and electricity-generation capacity of the SOFC are the anolytes and catholytes. The sulfide produced from the sulfate-reducing process is thought to play the key role of an electron mediator (anolyte), which transfers electrons to the electrode to produce electricity. Sulfide can be removed in the anodic chamber of the SOFC when it is oxidized to the element sulfur (S°) through the biochemical reaction at the anode. The performance of wastewater treatment for sulfate/sulfide removal and electricity generation was evaluated by using different catholytes (dissolved oxygen in deionized water, a phosphate buffer, and ferricyanide). The results showed that the sulfate-removal efficiency is 92 ± 1.2% during a 95-day operation. A high sulfide-removal efficiency of 93.5 ± 1.2 and 83.7 ± 2% and power density of 18.5 ± 1.1 and 15.2 ± 1.2 mW/m2 were obtained with ferricyanide and phosphate buffers as the catholyte, respectively, which is about 2.6 and 2.1 times higher than dissolved oxygen being used as a catholyte, respectively. These results indicated that cathode electron acceptors have a direct effect on the performance of the treatment system. The sulfide-removal efficiency and power density of the phosphate buffer SOFC were only slightly less than the ferricyanide SOFC. Therefore, a phosphate buffer could serve as a low-cost and effective pH buffer for practical applications, especially for wastewater treatment. The results presented in this study clearly revealed that the integrated treatment system can be effectively applied for sulfate/sulfide removal and electricity generation simultaneously.

3.
Bioprocess Biosyst Eng ; 38(10): 2003-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26251206

RESUMO

Biological treatment with sulfate-reducing bacteria (SRB) is considered to be an excellent option to remove heavy metals from wastewater. In this study, the optimization of sulfide production for an enhanced removal of lead by a consortium of SRB was carried out based on central composite design and analyzed using response surface methodology (RSM). The sulfide production process was investigated as a function of three independent variables: solution pH (6.5-8.5), lactate concentration (32-96 mM), and sulfate concentration (16-32 mM). RSM analysis showed that the optimum conditions for a high sulfide concentration (14.2 mM) occurred at a pH of 7.5 and at lactate and sulfate concentrations of 53.4 mM and 22.6 mM, respectively. The lead removal efficiency of the SRB consortium using optimum conditions was determined in four parallel anaerobic continuous moving bed biofilm reactors (V = 2 L) that were fed with synthetic wastewater containing dissolved lead at concentrations of 0, 100, 150, 200 mg L(-1) and operated with a hydraulic retention time of 5 days. 99-100 % was removed from synthetic wastewater with lead concentrations of 100 and 150 mg L(-1) during 40 days of operation. For the highest lead concentration of 200 mg L(-1), a decrease in efficiency of removal (96 %) was observed at the end of the experiment.


Assuntos
Chumbo/metabolismo , Consórcios Microbianos/fisiologia , Sulfetos/metabolismo , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Chumbo/isolamento & purificação , Oxirredução , Sulfatos/metabolismo , Sulfetos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA