Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(5): 1739-1752, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38647213

RESUMO

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Assuntos
Aldose-Cetose Isomerases , Antimaláricos , Fosfomicina , Ácidos Hidroxâmicos , Complexos Multienzimáticos , Plasmodium falciparum , Fosfomicina/farmacologia , Fosfomicina/análogos & derivados , Fosfomicina/química , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Aldose-Cetose Isomerases/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Antimaláricos/farmacologia , Antimaláricos/química , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/enzimologia , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Domínio Catalítico , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo
2.
Cell Chem Biol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38981479

RESUMO

Spread of antimicrobial resistances urges a need for new drugs against Mycobacterium tuberculosis (Mtb) with mechanisms differing from current antibiotics. Previously, callyaerins were identified as promising anti-tubercular agents, representing a class of hydrophobic cyclopeptides with an unusual (Z)-2,3-di-aminoacrylamide unit. Here, we investigated the molecular mechanisms underlying their antimycobacterial properties. Structure-activity relationship studies enabled the identification of structural determinants relevant for antibacterial activity. Callyaerins are bacteriostatics selectively active against Mtb, including extensively drug-resistant strains, with minimal cytotoxicity against human cells and promising intracellular activity. By combining mutant screens and various chemical proteomics approaches, we showed that callyaerins target the non-essential, Mtb-specific membrane protein Rv2113, triggering a complex dysregulation of the proteome, characterized by global downregulation of lipid biosynthesis, cell division, DNA repair, and replication. Our study thus identifies Rv2113 as a previously undescribed Mtb-specific drug target and demonstrates that also non-essential proteins may represent efficacious targets for antimycobacterial drugs.

3.
J Agric Food Chem ; 71(29): 11056-11068, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436951

RESUMO

Clonostachys rosea is a fungus widely distributed on Earth and has a high capacity to adapt to complex environments in soil, plants, or sea. It is an endophyte that can be used as a potential biocontrol agent to protect plants from pathogenic fungi, nematodes, and insects. However, the spectrum of secondary metabolites produced by C. rosea has only scarcely been studied. In the present study, eight new phenalenones, asperphenalenones F-M (1-8), together with two known derivatives, asperphenalenones E and B (9 and 10), were isolated from the axenic rice culture of this fungus. The structures of the new compounds were elucidated by nuclear magnetic resonance, high-resolution electrospray ionization mass spectrometry, electronic circular dichroism, and gas chromatography-mass spectrometry analyses. Asperphenalenones J-M (5-8) are unusual phenalenone adducts that are conjugated to diterpenoid glycosides. Asperphenalenones F and H showed moderate antibacterial activity against methicillin-resistant Staphylococcus aureus, with minimal inhibitory concentrations of 12.5 and 25 µM, respectively. Asperphenalenone B exhibited low antiviral activity against the human immunodeficiency virus replication. Furthermore, asperphenalenones F and H exhibited low cytotoxicity against Jurkat cells, while all other compounds were devoid of cytotoxicity.


Assuntos
Anti-Infecciosos , Hypocreales , Staphylococcus aureus Resistente à Meticilina , Nematoides , Animais , Humanos , Hypocreales/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo
4.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015133

RESUMO

The continuous, worldwide spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) endanger the World Health Organization's (WHO) goal to end the global TB pandemic by the year 2035. During the past 50 years, very few new drugs have been approved by medical agencies to treat drug-resistant TB. Therefore, the development of novel antimycobacterial drug candidates to combat the threat of drug-resistant TB is urgent. In this work, we developed and optimized a total synthesis of the antimycobacterial natural flavonoid chlorflavonin by selective ruthenium(II)-catalyzed ortho-C(sp2)-H-hydroxylation of a substituted 3'-methoxyflavonoid skeleton. We extended our methodology to synthesize a small compound library of 14 structural analogs. The new analogs were tested for their antimycobacterial in vitro activity against Mycobacterium tuberculosis (Mtb) and their cytotoxicity against various human cell lines. The most promising new analog bromflavonin exhibited improved antimycobacterial in vitro activity against the virulent H37Rv strain of Mtb (Minimal Inhibitory Concentrations (MIC90) = 0.78 µm). In addition, we determined the chemical and metabolic stability as well as the pKa values of chlorflavonin and bromflavonin. Furthermore, we established a quantitative structure-activity relationship model using a thermodynamic integration approach. Our computations may be used for suggesting further structural changes to develop improved derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA