Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(18): e2308934, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38161260

RESUMO

Exsolution generates metal nanoparticles anchored within crystalline oxide supports, ensuring efficient exposure, uniform dispersion, and strong nanoparticle-perovskite interactions. Increased doping level in the perovskite is essential for further enhancing performance in renewable energy applications; however, this is constrained by limited surface exsolution, structural instability, and sluggish charge transfer. Here, hybrid composites are fabricated by vacuum-annealing a solution containing SrTiO3 photoanode and Co cocatalyst precursors for photoelectrochemical water-splitting. In situ transmission electron microscopy identifies uniform, high-density Co particles exsolving from amorphous SrTiO3 films, followed by film-crystallization at elevated temperatures. This unique process extracts entire Co dopants with complete structural stability, even at Co doping levels exceeding 30%, and upon air exposure, the Co particles embedded in the film oxidize to CoO, forming a Schottky junction at the interface. These conditions maximize photoelectrochemical activity and stability, surpassing those achieved by Co post-deposition and Co exsolution from crystalline oxides. Theoretical calculations demonstrate in the amorphous state, dopant─O bonds become weaker while Ti─O bonds remain strong, promoting selective exsolution. As expected from the calculations, nearly all of the 30% Fe dopants exsolve from SrTiO3 in an H2 environment, despite the strong Fe─O bond's low exsolution tendency. These analyses unravel the mechanisms driving the amorphous exsolution.

2.
Nano Lett ; 20(4): 2733-2740, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32109067

RESUMO

Infrared photodetectors are sought for diverse applications and their performance relies on photoactive materials and photocurrent generation mechanisms. Here, we fabricate IR photodetectors with heavily hydrogen-doped VO2 (i.e., HVO2) single-crystalline nanoparticles which show two orders greater resistivities than pure VO2. The I-V plots obtained under IR light irradiation are expressed by space charge limited current mechanism and the increase in photocurrent occurs due to the increase in the number of photoinduced trap sites. This phenomenon remarkably improves the key parameters at λ = 780 nm of high responsivity of 35280 A/W, high detectivity of 1.12 × 1013 Jones, and strikingly fast response times of 0.6-2.5 ns, that is, 3 orders of magnitude faster than the best records of two-dimensional structures and heterostructures. Density functional theory calculations illustrate that the generation of photoinduced trap sites is attributed to the movement of hydrogen atoms to less stable interstitial sites in VO2 under light exposure.

3.
Small ; 16(3): e1906109, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31859444

RESUMO

Organic semiconductors (OSCs) are highly susceptible to the formation of metastable polymorphs that are often transformed by external stimuli. However, thermally reversible transformations in OSCs with stability have not been achieved due to weak van der Waals forces, and poor phase homogeneity and crystallinity. Here, a polymorph of a single crystalline 2,7-dioctyl[1] benzothieno[3,2-b][1]benzothio-phene rod on a low molecular weight poly(methyl methacrylate) (≈120k) that limits crystal coarsening during solvent vapor annealing is fabricated. Molecules in the polymorph lie down slightly toward the substrate compared to the equilibrium state, inducing an order of greater resistivity. During thermal cycling, the polymorph exhibits a reversible change in resistivity by 5.5 orders with hysteresis; this transition is stable toward bias and thermal cycling. Remarkably, varying cycling temperatures leads to diverse resistivities near room temperature, important for nonvolatile multivalue memories. These trends persist in the carrier mobility and on/off ratio of the polymorph field-effect transistor. A combination of in situ grazing incident wide angle X-ray scattering analyses, visualization for electronic and structural analysis simulations, and density functional theory calculations reveals that molecular tilt governs the charge transport characteristics; the polymorph transforms as molecules tilt, and thereby, only a homogeneous single-crystalline phase appears at each temperature.

4.
Small ; 16(40): e2003055, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32914531

RESUMO

ABO3 perovskite materials and their derivatives have inherent structural flexibility due to the corner sharing network of the BO6 octahedron, and the large variety of possible structural distortions and strong coupling between lattice and charge/spin degrees of freedom have led to the emergence of intriguing properties, such as high-temperature superconductivity, colossal magnetoresistance, and improper ferroelectricity. Here, an unprecedented polar ferromagnetic metal phase in SrRuO3 (SRO) thin films is presented, arising from the strain-controlled oxygen octahedral rotation (OOR) pattern. For compressively strained SRO films grown on SrTiO3 substrate, oxygen octahedral network relaxation is accompanied by structural phase separation into strained tetragonal and bulk-like orthorhombic phases, and the asymmetric OOR evolution across the phase boundary allows formation of the polar phase, while bulk metallic and ferromagnetic properties are maintained. From the results, it is expected that other oxide perovskite thin films will also yield similar structural environments with variation of OOR patterns, and thereby provide promising opportunities for atomic scale control of material properties through strain engineering.

5.
Nano Lett ; 19(8): 5689-5696, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31299156

RESUMO

The dielectric reliability of low-k materials during mechanical deformation attracts tremendous attention, owing to the increasing demand for thin electronics to meet the ever-shrinking form factor of consumer products. However, the strong coupling between dielectric/electric and mechanical properties limits the use of low-k dielectrics in industrial applications. We report the leakage current and dielectric properties of a nanolattice capacitor during compressive stress cycling. Electrical breakdown measurements during the stress cycling, combined with a theoretical model and in situ mechanical experiments, provide insights to key breakdown mechanisms. Electrical breakdown occurs at nearly 50% strain, featuring a switch-like binary character, correlated with a transition from beam bending and buckling to collapse. Breakdown strength appears to recover after each cycle, concomitant with nanolattice's shape recovery. The compressive displacement at breakdown decreases with cycling due to permanently buckled beams, transforming the conduction mechanism from Schottky to Poole-Frankel emission. Remarkably, our capacitor with 99% porosity, k ∼ 1.09, is operative up to 200 V, whereas devices with 17% porous alumina films breakdown upon biasing based on a percolation model. Similarly with electrical breakdown, the dielectric constant of the capacitor is recoverable with five strain cycles and is stable under 25% compression. These outstanding capabilities of the nanolattice are essential for revolutionizing future flexible electronics.

6.
J Am Chem Soc ; 141(32): 12601-12609, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31291101

RESUMO

Precise control over the size and morphology of the Au spiky nanoparticle (SNP) is essential to obtain narrow and tunable surface plasmon resonance (SPR). However, these challenges require a fundamental understanding of the particle growth mechanism and kinetics as well as its morphological transition, which can only be achieved by real-time observation at nanometer resolution. Here, we report in situ liquid cell transmission electron microscopy studies of single and multiple Au SNP growth at various conditions of such parameters as size and dose rate of electron beam and HAuCl4 solution concentration. The particle evolves via a mixture of reaction and Au formation-limited growth, followed by Au formation-limited growth-a transition from faceted to roughened surfaces, confirmed by the analysis with different beam sizes and the UV-vis spectra that feature a unique trend of short- and long-wavelength plasmon band shift. Quantitative analyses combined with a theoretical model determine the transition time (tc) of the two regimes and estimate the surface concentration (ci) of the particle with time. Interestingly, tc can be manipulated by the particle density, which alters the surface roughening rate, and the density is modulated by tuning the aforementioned parameters based on DLVO theory. These results suggest a new method for synthesizing a Au SNP whose size, morphology, SPR, and density can be sensibly manipulated without adding reducing or capping agents.

7.
J Am Chem Soc ; 141(16): 6690-6697, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30938992

RESUMO

A precise control of the size, density, and distribution of metal nanoparticles dispersed on functional oxide supports is critical for promoting catalytic activity and stability in renewable energy and catalysis devices. Here, we measure the growth kinetics of individual Co particles ex-solved on SrTi0.75Co0.25O3-δ polycrystalline thin films under a high vacuum, and at various temperatures and grain sizes using in situ transmission electron microscopy. The ex-solution preferentially occurs at grain boundaries and corners which appear essential for controlling particle density and distribution, and enabling low temperature ex-solution. The particle reaches a saturated size after a few minutes, and the size depends on temperature. Quantitative measurements with a kinetic model determine the rate limiting step, vacancy formation enthalpy, ex-solution enthalpy, and activation energy for particle growth. The ex-solved particles are tightly socketed, preventing interactions among them over 800 °C. Furthermore, we obtain the first direct clarification of the active reaction site for CO oxidation-the Co-oxide interface, agreeing well with density functional theory calculations.

8.
Nano Lett ; 17(12): 7737-7743, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29112423

RESUMO

Low dielectric constant (low-k) materials have gained increasing popularity because of their critical role in developing faster, smaller, and higher performance devices. Their practical use has been limited by the strong coupling among mechanical, thermal, and electrical properties of materials and their dielectric constant; a low-k is usually attained by materials that are very porous, which results in high compliance, that is, silica aerogels; high dielectric loss, that is, porous polycrystalline alumina; and poor thermal stability, that is, Sr-based metal-organic frameworks. We report the fabrication of 3D nanoarchitected hollow-beam alumina dielectrics which k is 1.06-1.10 at 1 MHz that is stable over the voltage range of -20 to 20 V and a frequency range of 100 kHz to 10 MHz. This dielectric material can be used in capacitors and is mechanically resilient, with a Young's modulus of 30 MPa, a yield strength of 1.07 MPa, a nearly full shape recoverability to its original size after >50% compressions, and outstanding thermal stability with a thermal coefficient of dielectric constant (TCK) of 2.43 × 10-5 K-1 up to 800 °C. These results suggest that nanoarchitected materials may serve as viable candidates for ultra low-k materials that are simultaneously mechanically resilient and thermally and electrically stable for microelectronics and devices.

9.
Nano Lett ; 16(7): 4074-81, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27253750

RESUMO

Single-crystal VO2 wires have gained tremendous popularity for enabling the study of the fundamental properties of the metal-insulator transition (MIT); however, it remains tricky to precisely measure the intrinsic properties of the transitional phases with controlled wire-growth properties, such as diameter. Here, we report a facile method for growing VO2 wires with controlled diameters by separating the formation of the liquidus V2O5 seed droplets from the evolution of the VO2 wire using oxygen gas. The kinetic analyses suggest that the growth proceeds via the VS (vapor-solid) mechanism, whereas the droplet determines the size and the location of the wire. In situ Raman spectroscopy combined with analyses of the electrical properties of an individual wire allowed us to construct a diameter-temperature phase diagram from three initial phases (i.e., M1, T, and M2), which were created by misfit stress from the substrate and were preserved at room temperature. We also correlated this relation with resistivity-diameter and activation energy-diameter relations supported by theoretical modeling. These carefully designed approaches enabled us to elucidate the details of the phase transitions over a wide range of stress conditions, offering an opportunity to quantify relevant thermodynamic and electronic parameters (including resistivities, activation energies, and energy barriers of the key insulating phases) and to explain the intriguing behaviors of the T phase during the MIT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA