Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Small ; 19(14): e2205202, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36634999

RESUMO

Thermoelectric technology, which has been receiving attention as a sustainable energy source, has limited applications because of its relatively low conversion efficiency. To broaden their application scope, thermoelectric materials require a high dimensionless figure of merit (ZT). Porous structuring of a thermoelectric material is a promising approach to enhance ZT by reducing its thermal conductivity. However, nanopores do not form in thermoelectric materials in a straightforward manner; impurities are also likely to be present in thermoelectric materials. Here, a simple but effective way to synthesize impurity-free nanoporous Bi0.4 Sb1.6 Te3 via the use of nanoporous raw powder, which is scalably formed by the selective dissolution of KCl after collision between Bi0.4 Sb1.6 Te3 and KCl powders, is proposed. This approach creates abundant nanopores, which effectively scatter phonons, thereby reducing the lattice thermal conductivity by 33% from 0.55 to 0.37 W m-1 K-1 . Benefitting from the optimized porous structure, porous Bi0.4 Sb1.6 Te3 achieves a high ZT of 1.41 in the temperature range of 333-373 K, and an excellent average ZT of 1.34 over a wide temperature range of 298-473 K. This study provides a facile and scalable method for developing high thermoelectric performance Bi2 Te3 -based alloys that can be further applied to other thermoelectric materials.

2.
Nanotechnology ; 29(45): 455202, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30160244

RESUMO

Rutile TiO2, a high temperature phase, has attracted interest as a capacitor dielectric in dynamic random-access memories (DRAMs). Despite its high dielectric constant of >80, large leakage currents caused by a low Schottky barrier height at the TiO2/electrode interface have hindered the use of rutile TiO2 as a commercial DRAM capacitor. Here, we propose a new Ru-Pt alloy electrode to increase the height of the Schottky barrier. The Ru-Pt mixed layer was grown by atomic layer deposition. The atomic ratio of Ru/Pt varied in the entire range from 100 at.% Ru to 100 at.% Pt. Rutile TiO2 films were inductively formed only on the Ru-Pt layer containing ≤43 at.% Pt, while anatase TiO2 films with a relatively low dielectric constant (∼40) were formed at Pt compositions > 63 at.%. The Ru-Pt (40-50 at.%) layer also attained an increase in work function of ∼0.3-0.4 eV, leading to an improvement in the leakage currents of the TiO2/Ru-Pt capacitor. These findings suggested that a Ru-Pt layer could serve as a promising electrode for next-generation DRAM capacitors.

3.
Nanotechnology ; 26(30): 304003, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26154699

RESUMO

The controllability of the nucleation behavior of Pt in atomic layer deposition (ALD) by surface pretreatments with H2O, H2S, and NH3 was investigated. The H2O pretreatment on SiO2 and TiO2 surfaces had little effect on the nucleation of Pt. The H2S pretreatment on the SiO2 and TiO2 surfaces significantly delayed the nucleation of Pt on them, while the NH3 pretreatment on the TiO2 surface led to fluent nucleation of Pt. In particular, a continuous Pt film was successfully formed even at an ultrathin thickness of approximately 2.2 nm by NH3 pretreatment. This work suggests that the pretreatment with H2S and NH3 is an efficient way to control the nucleation of Pt in ALD without the support of any reactive species, such as plasma or O3. Such a strategy enables the easy control of the size and distribution density of Pt nanoparticles for a wide range of applications.

4.
Phys Chem Chem Phys ; 16(8): 3529-33, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24441763

RESUMO

Utilizing internal energy artificially implemented by cold-pressing in the specimens, we demonstrate a way to synthesize high-quality bulk thermoelectric materials at otherwise too low a temperature to approach to an equilibrium state. This low-temperature synthesis technique will provide a new opportunity to integrate high-performance thermoelectric materials into various electronic devices for a built-in energy source, as well as to develop low-cost fabrication methods.

5.
ACS Appl Mater Interfaces ; 16(14): 17683-17691, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531014

RESUMO

Porous thermoelectric materials offer exciting prospects for improving the thermoelectric performance by significantly reducing the thermal conductivity. Nevertheless, porous structures are affected by issues, including restricted enhancements in performance attributed to decreased electronic conductivity and degraded mechanical strength. This study introduces an innovative strategy for overcoming these challenges using porous Bi0.4Sb1.6Te3 (BST) by combining porous structuring and interface engineering via atomic layer deposition (ALD). Porous BST powder was produced by selectively dissolving KCl in a milled mixture of BST and KCl; the interfaces were engineered by coating ZnO films through ALD. This novel architecture remarkably reduced the thermal conductivity owing to the presence of several nanopores and ZnO/BST heterointerfaces, promoting efficient phonon scattering. Additionally, the ZnO coating mitigated the high resistivity associated with the porous structure, resulting in an improved power factor. Consequently, the ZnO-coated porous BST demonstrated a remarkable enhancement in thermoelectric efficiency, with a maximum zT of approximately 1.53 in the temperature range of 333-353 K, and a zT of 1.44 at 298 K. Furthermore, this approach plays a significant role in enhancing the mechanical strength, effectively mitigating a critical limitation of porous structures. These findings open new avenues for the development of advanced porous thermoelectric materials and highlight their potential for precise interface engineering through the ALD.

6.
Cell Mol Neurobiol ; 33(1): 75-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22972205

RESUMO

Alpha-synuclein (α-syn), as a neuroprotein, is expressed in neural tissue, and it is related to a synaptic transmission and neuronal plasticity. In this study, we compared the distribution and immunoreactivity of α-syn and related gliosis in hippocampus between young adult (2-3 years) and aged (10-12 years) beagle dogs. In both groups, α-syn immunoreactivity was detected in neuropil of all the hippocampal sub-regions, but not in neuronal somata. In the aged hippocampus, α-syn immunoreactivity was apparently increased in mossy fibers compared to that in the adult dog. In addition, α-syn protein level was markedly increased in the aged hippocampus. On the other hand, GFAP and Iba-1 immunoreactivity in astrocytes and microglia, respectively, were increased in all the hippocampal sub-regions of the aged group compared to that in the adult group: especially, their immunoreactivity was apparently increased around mossy fibers. In addition, in this study, we could not find any expression of α-syn in astrocytes and microglia. These results indicate that α-syn immunoreactivity apparently increases in the aged hippocampus and that GFAP and Iba-1 immunoreactivity are also apparently increased at the regions with increased α-syn immunoreactivity. This increase in α-syn expression might be a feature of normal aging.


Assuntos
Envelhecimento/metabolismo , Hipocampo/metabolismo , alfa-Sinucleína/metabolismo , Fatores Etários , Animais , Giro Denteado/química , Giro Denteado/metabolismo , Cães , Hipocampo/química , Imuno-Histoquímica , Masculino , Distribuição Aleatória , alfa-Sinucleína/química
7.
Cell Mol Neurobiol ; 33(5): 615-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23605681

RESUMO

Aging is an inevitable process that occurs in the whole body system accompanying with many functional and morphological changes. Inflammation is known as one of age-related factors, and inflammatory changes could enhance mortality risk. In this study, we compared immunoreactivities of inflammatory cytokines, such as interleukin (IL)-2 (a pro-inflammatory cytokine), its receptor (IL-2R), IL-4 (an anti-inflammatory cytokine), and its receptor (IL-4R) in the cervical and lumbar spinal cord of young adult (2-3 years old) and aged (10-12 years old) beagle dogs using immunohistochemistry and western blotting. IL-2 and IL-2R-immunoreactive nerve cells were found throughout the gray matter of the cervical and lumbar spinal cord of young adult and aged dogs. In the spinal cord neurons of the aged dog, immunoreactivity and protein levels were apparently increased compared with those in the young adult dog. Change patterns of IL-4- and IL-4R-immunoreactive cells and their protein levels were also similar to those in IL-2 and IL-2R; however, IL-4 and IL-4R immunoreactivity in the periphery of the neuronal cytoplasm in the aged dog was much stronger than that in the young adult dog. These results indicate that the increase of inflammatory cytokines and their receptors in the aged spinal cord might be related to maintaining a balance of inflammatory reaction in the spinal cord during normal aging.


Assuntos
Envelhecimento/patologia , Inflamação/patologia , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Medula Espinal/patologia , Animais , Western Blotting , Cães , Imuno-Histoquímica , Receptores de Interleucina-2/metabolismo , Receptores de Interleucina-4/metabolismo , Medula Espinal/metabolismo
8.
Nanotechnology ; 24(38): 384005, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23999153

RESUMO

Chemical synapses are important components of the large-scaled neural network in the hippocampus of the mammalian brain, and a change in their weight is thought to be in charge of learning and memory. Thus, the realization of artificial chemical synapses is of crucial importance in achieving artificial neural networks emulating the brain's functionalities to some extent. This kind of research is often referred to as neuromorphic engineering. In this study, we report short-term memory behaviours of electrochemical capacitors (ECs) utilizing TiO2 mixed ionic-electronic conductor and various reactive electrode materials e.g. Ti, Ni, and Cr. By experiments, it turned out that the potentiation behaviours did not represent unlimited growth of synaptic weight. Instead, the behaviours exhibited limited synaptic weight growth that can be understood by means of an empirical equation similar to the Bienenstock-Cooper-Munro rule, employing a sliding threshold. The observed potentiation behaviours were analysed using the empirical equation and the differences between the different ECs were parameterized.


Assuntos
Eletroquímica/instrumentação , Eletrônica/instrumentação , Nanotecnologia/instrumentação , Redes Neurais de Computação , Titânio/química , Animais , Hipocampo/fisiologia , Modelos Neurológicos , Ratos , Sinapses/fisiologia
9.
J Phys Ther Sci ; 25(5): 571-4, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24259804

RESUMO

[Purpose] This study examined the effects of deep flexor muscle-strengthening exercise on the neck-shoulder posture, and the strength and endurance of the deep flexor muscles of high-school students. [Subjects] The subjects were 30 seventeen-year-old female high-school students who complained about bad posture and chronic neck-shoulder pain. They were randomly divided into an experimental group of 15 subjects, who performed a deep flexor muscle-strengthening exercise and a control group of 15 subjects, who performed a basic stretching exercise. [Methods] The experimental group of 15 subjects performed a deep flexor muscle-strengthening exercise consisting of low-load training of the cranio-cervical flexor muscle, and the control group of 15 subjects performed a basic stretching exercise consisting of seven motions. [Results] The experimental group showed statistically significant changes in head tilt angle, neck flexion angle, forward shoulder angle, and the result of the cranio-cervical flexion test after the training. In contrast, the control group showed no statistically significant changes in these measures following the training. When the results of the groups were compared, statistically significant differences were found for all items between the experimental group and the control group. [Conclusion] Strengthening cranio-cervical flexor muscles is important for the adjustment of neck posture, and maintaining their stability is required to improve neck-shoulder posture.

10.
J Phys Ther Sci ; 25(8): 953-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24259892

RESUMO

[Purpose] The purpose of this study was to carry out a 16-week treatment of lumbar stabilization exercise with a ball targeting patients with chronic low back pain and investigate its effect on alleviation of low back pain and bone mineral density. [Subjects and Methods] The subjects of this study were 36 patients who were diagnosed with chronic low back pain. They were divided into a conservative treatment group (CTG, n=12), floor exercise group (FEG, n=12), and ball exercise group (BEG, n=12). The degree of recovery from pain was looked into using a visual analogue scale (VAS) and DEXXUM T (OsteoSys, Seoul, Korea) which was used to observe the changes in bone mineral density. [Result] Although the VAS score was reduced in FEG and BEG with treatment, it was not reduced in CTG. Also, the bone mineral density was increased in FEG and BEG, while it was reduced in CTG. [Conclusion] Lumbar stabilization exercises using a ball are thought to be an effective interventional therapy for the alleviation of chronic low back pain and to increase bone mineral density of patients.

11.
J Phys Ther Sci ; 25(5): 627-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24259817

RESUMO

[Purpose] Sensorimotor processing, including motor performance, is altered during the process of normal aging. Previous studies have investigated tasks requiring complex visuomotor coordination and active joint reposition tests. Therefore, the purpose of this study was to investigate age-related changes in upper limb tasks, such as visuomotor coordination and proprioceptive acuity. [Subjects and Methods] We recruited 20 healthy elderly subjects and 20 healthy young subjects. We evaluated a tracking task for visuomotor function and a joint reposition test for integrity of proprioceptive sense in both hands of the elderly subjects, and compared the results with those of the healthy young subjects. [Results] The accuracy index scores for the tracking task were significantly lower in both the dominant and non-dominant hands of the elderly subjects than those of the young group. In addition, the reposition error score in the joint reposition test was significantly higher in the elderly group than in the young group. [Conclusion] Sensorimotor functions of both the dominant and non-dominant hands showed a decline in the elderly group. This finding suggests that sensorimotor function deteriorates with advancing age.

12.
J Am Chem Soc ; 134(6): 2872-5, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22296213

RESUMO

Ultrathin (4-6 nm) single-crystal Bi(2)Se(3) nanodiscs and nanosheets were synthesized through a simple and quick solution process. The growth mechanism was investigated in detail. Crystal seeds grew via 2D self-attachment of small nanoparticles followed by epitaxial recrystallization into single crystals. The lateral dimension of the nanodiscs increased and their shape changed from circles to hexagons as the reaction temperature increased. Positively charged polymer surfactants greatly enlarged the lateral dimension to produce nanosheets with uniform thickness.

13.
J Nanosci Nanotechnol ; 12(4): 3492-5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849153

RESUMO

(Bi2Te3)(1-x)(PbTe)(x) binary systems near eutectic composition were prepared by melting of elemental metals and a sequential water quenching process and their microstructures and thermoelectric properties were investigated. Multiple phases such as Bi2Te3, BiPbTe and PbTe were observed due to phase separation when the composition x was higher than the eutectic point. Also the electrical conduction type of the alloys converted from p-type to n-type in the phase separated alloys. The lattice thermal conductivities in the phase-separated alloys are lower than those in alloys without phase separation, attributable to increased boundary scattering.

14.
J Nanosci Nanotechnol ; 12(4): 3629-32, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849183

RESUMO

A bismuth telluride (BT)/indium selenide (IS) multilayer film was deposited at room temperature by rf magnetron sputtering on a sapphire substrate in order to investigate how the multilayered structure affects the microstructure and thermoelectric properties. The effect of annealing at different temperatures was also studied. The results were compared with those from a BT film with the same thickness. A TEM study showed that the interface between the BT and IS layers became vague as the annealing temperature increased, and the BT layer crystallized while the IS layer did not. The presence of thin IS layers can help to limit the evaporation of Te from the BT/IS multilayer film, thus increasing the amount of Bi2Te3 phase in the multilayer film as compared with that of the BT film. An abrupt increase in the Seebeck coefficient of the multilayer film was observed when annealed at 300 degrees C, and the resistivity of the annealed multilayer film was high compared to that of the BT film. This result can also be explained by the proposed role of the IS layer, which limits the evaporation of Te at high temperature. The highest power factor of -3.9 x 10(-6) W/K2 cm was obtained at room temperature from the multilayer film annealed at 300 degrees C.

15.
J Nanosci Nanotechnol ; 12(4): 3633-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849184

RESUMO

Bi2Te3-In2Se3 films were prepared by co-sputtering followed by annealing, and their structural and thermoelectric properties were investigated. The immiscible nature of the two alloys results in precipitation of the second phase, thus leading to structures with self-assembled dots that are a few nanometers in scale. HAADF-STEM and HRTEM were used to confirm that In2Se3 nanodots that were a few nanometers in size did indeed form in the Bi2Te3 thin film. It was found that the incorporation of these nanodots can reduce the thermal conductivity of the thin film.

16.
Adv Sci (Weinh) ; 9(12): e2104915, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35199951

RESUMO

A wearable thermoelectric generator (WTEG) that utilizes human body heat can be a promising candidate for the wearable power generators. The temperature difference (ΔT) between the body and the environment is a stable source driving the WTEG, but this driving force is limited by the ambient temperature itself at the same time. Here, a novel WTEG that can be operated using the dual source of body heat and light with exceptionally high driving force is fabricated. The printable solar absorbing layer attached to the bottom of the WTEG absorbs ≈95% of the light from ultraviolet to far infrared and converts it into heat. To optimize the power density of WTEGs, the fill factor of the thermoelectric (TE) leg/electrode is considered through finite-difference time-domain (FDTD) simulation. When operated by the dual sources, the WTEG exhibits a power density of 15.33 µW cm-2 , which is the highest under "actual operating conditions" among all kinds of WTEGs. In addition, unlike conventional WTEGs, the WTEG retains 83.1% of its output power at an ambient temperature of 35 °C compared to its output power at room temperature. This study will accelerate the commercialization of WTEGs by introducing a novel method to overcome their limitations.


Assuntos
Temperatura Alta , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Eletrodos , Humanos , Luz Solar
17.
Sci Rep ; 12(1): 13614, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948586

RESUMO

This article explores the deep learning approach towards approximating the effective electrical and thermal conductivities of copper (Cu)-carbon nanotube (CNT) composites with CNTs aligned to the field direction. Convolutional neural networks (CNN) are trained to map the two-dimensional images of stochastic Cu-CNT networks to corresponding conductivities. The CNN model learns to estimate the Cu-CNT composite conductivities for various CNT volume fractions, interfacial electrical resistances, Rc = 20 Ω-20 kΩ, and interfacial thermal resistances, R″t,c = 10-10-10-7 m2K/W. For training the CNNs, the hyperparameters such as learning rate, minibatch size, and hidden layer neurons are optimized. Without iteratively solving the physical governing equations, the trained CNN model approximates the electrical and thermal conductivities within a second with the coefficient of determination (R2) greater than 98%, which may take longer than 100 min for a convectional numerical simulation. This work demonstrates the potential of the deep learning surrogate model for the complex transport processes in composite materials.


Assuntos
Nanotubos de Carbono , Simulação por Computador , Condutividade Elétrica , Redes Neurais de Computação , Condutividade Térmica
18.
Neurochem Res ; 36(3): 435-42, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193958

RESUMO

We investigated distribution and age-related changes in two isoforms of GABA synthesizing enzymes, glutamic acid decarboxylase (GAD) 65 and 67, in the lumbar levels (L(5)-L(6)) of the dog spinal cord. Male German shepherds were used at 1-2 years (young adult dogs) and 10-12 years (aged dogs) of age. GAD65 immunoreaction was observed in neuropil, not in cell bodies, in all laminae of the adult lumbar spinal cord: Many punctate GAD65-immunoreactive structures were shown in all laminae. The density of GAD65 immunoreactive structures was highest in laminae I-III, and lowest in lamina VII. In the aged dog, the distribution pattern of GAD65 immunoreactivity was similar to that in the adult dog; however the density of GAD65-immunoreactive structures and its protein levels were significantly increased in the aged lumbar spinal cord. GAD67 immunoreaction in the adult dog was also distributed in all laminae of the lumbar spinal cord like GAD65; however, we found that small GAD67-immunoreactive cell bodies were observed in laminae II, III and VIII. In the aged dogs, GAD67 immunoreactivity and its protein levels were also increased compared to those in the adult group. In conclusion, our results indicate that the distribution of GAD65-immunoreactive structures is different from GAD67-immunoreactive structures and that their immunoreactivity in the aged dogs is much higher than the adult dogs.


Assuntos
Glutamato Descarboxilase/metabolismo , Isoenzimas/metabolismo , Vértebras Lombares , Medula Espinal/metabolismo , Fatores Etários , Animais , Cães , Imuno-Histoquímica , Masculino , Medula Espinal/citologia
19.
ACS Nano ; 15(8): 13118-13128, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34279909

RESUMO

As power-conversion devices, flexible thermoelectrics that enable conformal contact with heat sources of arbitrary shape are attractive. However, the low performance of flexible thermoelectric materials, which does not exceed those of brittle inorganic counterparts, hampers their practical applications. Herein, we propose inorganic chalcogenide-nanostructured carbon nanotube (CNT) yarns with outstanding power factor at a low temperature using electrochemical deposition. The inorganic chalcogenide-nanostructured CNT yarns exhibit the power factors of 3425 and 2730 µW/(m·K2) at 298 K for the p- and n-type, respectively, which is higher than those of previously reported flexible TE materials. On the basis of excellent performance and geometry advantage of the nanostructured CNT yarn for modular design, all-CNT based thermoelectric generators have been easily fabricated, showing the maximum power densities of 24 and 380 mW/m2 at ΔT = 5 and 20 K, respectively. These results provide a promising strategy for the realization of high-performance flexible thermoelectric materials and devices for flexible/or wearable self-powering systems.

20.
J Cell Biochem ; 111(3): 686-98, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20589831

RESUMO

The actual leukotriene D(4) (LTD(4)) signaling pathways that regulate cell proliferation have not been elucidated thoroughly although fatty acid and its metabolites play a key role in regulations of embryonic functions. Thus, this study investigated the response of mouse embryonic stem (ES) cells exposed to LTD(4) and elucidated the signaling pathways as well. LTD(4) increased DNA synthesis in concentration-dependent (≥10(-7) M) and time-dependent (≥12 h) manners, as determined by [(3)H] thymidine incorporation and increased cell number. LTD(4) induced the phosphorylation of signal transducer and activator of transcription-3 (STAT3) and the increase of intracellular Ca(2+) levels via cysteinyl leukotriene (CysLT) 1 and 2 receptors. LTD(4) increased Akt activation and calcineurin expression, which were blocked by STAT3 inhibitor and calcium chelators. LTD(4)-induced glycogen synthase kinase (GSK)-3ß phosphorylation was decreased by LY294002, Akt inhibitor, and cyclosporine A. LTD(4) inhibited the phosphorylation of ß-catenin. In addition, LTD(4)-stimulated migration through increased activation of focal adhesion kinase (FAK) and paxillin which were blocked by Akt inhibitor and cyclosporine A. LTD(4)-induced increases in protooncogene and cell cycle regulatory proteins were blocked by cyclosporine A, FAK siRNA, and ß-catenin siRNA. In conclusion, LTD(4)-stimulated mouse ES cell proliferation and migration via STAT3, phosphoinositide 3-kinases (PI3K)/Akt, Ca(2+)-calcineurin, and GSK-3ß/ß-catenin pathway.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Leucotrieno D4/farmacologia , Transdução de Sinais/fisiologia , Animais , Calcineurina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA