Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35683157

RESUMO

The development of an efficient and economic catalyst with high catalytic performance is always challenging. In this study, we report the synthesis of hollow CeO2 nanostructures and the crystallinity control of a CeO2 layer used as a support material for a CuO-CeO2 catalyst in CO oxidation. The hollow CeO2 nanostructures were synthesized using a simple hydrothermal method. The crystallinity of the hollow CeO2 shell layer was controlled through thermal treatment at various temperatures. The crystallinity of hollow CeO2 was enhanced by increasing the calcination temperature, but both porosity and surface area decreased, showing an opposite trend to that of crystallinity. The crystallinity of hollow CeO2 significantly influenced both the characteristics and the catalytic performance of the corresponding hollow CuO-CeO2 (H-Cu-CeO2) catalysts. The degree of oxygen vacancy significantly decreased with the calcination temperature. H-Cu-CeO2 (HT), which presented the lowest CeO2 crystallinity, not only had a high degree of oxygen vacancy but also showed well-dispersed CuO species, while H-Cu-CeO2 (800), with well-developed crystallinity, showed low CuO dispersion. The H-Cu-CeO2 (HT) catalyst exhibited significantly enhanced catalytic activity and stability. In this study, we systemically analyzed the characteristics and catalyst performance of hollow CeO2 samples and the corresponding hollow CuO-CeO2 catalysts.

2.
Materials (Basel) ; 13(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197526

RESUMO

It is of great importance to remove toxic gases by efficient methods for recovering the atmosphere to safe levels. The adsorption of the toxic gas molecules on solid adsorbents is one of the most useful techniques because of its simple operation and economic feasibility. Here, we report the uniform Bead-Shaped Mesoporous Alumina (BSMA) with tunable particle size for use as an adsorbent for removal of toxic ammonia. The BSMA particles with tunable diameters were synthesized by means of a sol-gel reaction of Al(NO3)3∙9H2O as an alumina precursor in the presence of chitosan as a template. When the ammonia solution is added dropwise to the prepared viscose mixture containing chitosan, acetic acid, and the alumina precursor solution, the sol-gel condensation reaction of the alumina precursor occurs in the chitosan polymer metrics, resulting in bead-shaped chitosan-aluminum hydroxide particles. Then, final Bead-Shaped Mesoporous Alumina (BSMA) particles are obtained by calcination at a high temperature. During the synthesis, changing the mole ratio of the chitosan template to the alumina precursor allowed the particle diameter of the final bead sample to be finely controlled. In addition, the prepared BSMA particles have well-developed mesoporous characteristics with relatively large surface areas, which are beneficial for adsorption of gas molecules. In an ammonia adsorption experiment, the BSMA-1.5 sample, which has the smallest particle diameter among the bead samples, was the best in terms of adsorption capacity. In this manuscript, we systemically discuss the relationship between the characteristics of BSMA samples and their adsorption of ammonia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA