RESUMO
The specific geometry of a molecule can have a pronounced influence on its chemical reactivity. However, experimental data on reactions of individual molecular isomers are still sparse because they are often difficult to separate and frequently interconvert into one another under ambient conditions. Here, we employ a novel crossed-beam experiment featuring an electrostatically controlled molecular beam combined with a source for radicals and metastables to spatially separate the cis and trans stereoisomers as well as individual rotational states of 1,2-dibromoethene and study their specific reactivities in the chemi-ionisation reaction with excited neon atoms. The experiments reveal pronounced isomeric and rotational specificities in the rates and product branching ratios of the reaction. The present study underlines the importance and combined role of molecular geometry and of rotational motion in the dynamics of chemi-ionisation reactions.
RESUMO
Mode-dependent H atom tunneling dynamics of the O-H bond predissociation of the S1 phenol has been theoretically analyzed. As the tunneling is governed by the complicated multi-dimensional potential energy surfaces that are dynamically shaped by the upper-lying S1(ππ*)/S2(πσ*) conical intersection, the mode-specific tunneling dynamics of phenol (S1) has been quite formidable to be understood. Herein, we have examined the topography of the potential energy surface along the particular S1 vibrational mode of interest at the nuclear configurations of the S1 minimum and S1/S2 conical intersection. The effective adiabatic tunneling barrier experienced by the reactive flux at the particular S1 vibrational mode excitation is then uniquely determined by the topographic shape of the potential energy surface extended along the conical intersection seam coordinate associated with the particular vibrational mode. The resultant multi-dimensional coupling of the specific vibrational mode to the tunneling coordinate is then reflected in the mode-dependent tunneling rate as well as nonadiabatic transition probability. Remarkably, the mode-specific experimental result of the S1 phenol tunneling reaction [K. C. Woo and S. K. Kim, J. Phys. Chem. A 123, 1529-1537 (2019)] (in terms of the qualitative and relative mode-dependent dynamic behavior) could be well rationalized by semi-classical calculations based on the mode-specific topography of the effective tunneling barrier, providing the clear conceptual insight that the skewed potential energy surfaces along the conical intersection seam (strongly or weakly coupled to the tunneling reaction coordinate) may dictate the tunneling dynamics in the proximity of the conical intersection.
RESUMO
The H atom tunneling dissociation dynamics of the S1 state of meta- or para-cresol has been investigated by using the picosecond time-resolved pump-probe spectroscopy in a state-specific manner. The S1 state lifetime (mainly due to the H atom tunneling reaction) is found to be mode-dependent whereas it quickly converges and remains constant as the rapid intramolecular vibrational energy redistribution (IVR) starts to participate in the S1 state relaxation with the increase of the S1 internal energy (Eint). The IVR rate and its change with increasing Eint have been reflected in the parent ion transients taken by tuning the total energy (hνpump + hνprobe) just above the adiabatic ionization threshold (so that the dissipation of the initial mode-character could be monitored as a function of the reaction time), indicating that the mode randomization rate into the S1 isoenergetic manifolds exceeds the tunneling rate quite early in terms of Eint for m-cresol (≤â¼1200 cm-1) or p-cresol (≤â¼800 cm-1) compared to the case of phenol (≤â¼1800 cm-1). Though the H atom tunneling dynamics of phenol (S1) seems to be little influenced by the methyl substitution on the either m- or p-position, the IVR rate has been found to be strongly accelerated due to the sharply-increasing (S1) density of states with increasing Eint due to the pivotal role of the low-frequency CH3 torsional mode.
RESUMO
Ground reaction force (GRF) is essential for estimating muscle strength and joint torque in inverse dynamic analysis. Typically, it is measured using a force plate. However, force plates have spatial limitations, and studies of gaits involve numerous steps and thus require a large number of force plates, which is disadvantageous. To overcome these challenges, we developed a deep learning model for estimating three-axis GRF utilizing shoes with three uniaxial load cells. GRF data were collected from 81 people as they walked on two force plates while wearing shoes with three load cells. The three-axis GRF was calculated using a seq2seq approach based on long short-term memory (LSTM). To conduct the learning, validation, and testing, random selection was performed based on the subjects. The 60 selected participants were divided as follows: 37 were in the training set, 12 were in the validation set, and 11 were in the test set. The estimated GRF matched the force plate-measured GRF with correlation coefficients of 0.97, 0.96, and 0.90 and root mean square errors of 65.12 N, 15.50 N, and 9.83 N for the vertical, anterior-posterior, and medial-lateral directions, respectively, and there was a mid-stance timing error of 5.61% in the test dataset. A Bland-Altman analysis showed good agreement for the maximum vertical GRF. The proposed shoe with three uniaxial load cells and seq2seq LSTM can be utilized for estimating the 3D GRF in an outdoor environment with level ground and/or for gait research in which the subject takes several steps at their preferred walking speed, and hence can supply crucial data for a basic inverse dynamic analysis.
Assuntos
Aprendizado Profundo , Sapatos , Humanos , Fenômenos Biomecânicos , Marcha/fisiologia , Caminhada/fisiologiaRESUMO
The S-H bond tunneling predissociation dynamics of thiophenol and its ortho-substituted derivatives (2-fluorothiophenol, 2-methoxythiophenol, and 2-chlorothiphenol) in S1 (ππ*) where the H atom tunneling is mediated by the nearby S2 (πσ*) state (which is repulsive along the S-H bond extension coordinate) have been investigated in a state-specific way using the picosecond time-resolved pump-probe spectroscopy for the jet-cooled molecules. The effects of the specific vibrational mode excitations and the SH/SD substitutions on the S-H(D) bond rupture tunneling dynamics have been interrogated, giving deep insights into the multidimensional aspects of the S1/S2 conical intersection, which also shapes the underlying adiabatic tunneling potential energy surfaces (PESs). The semiclassical tunneling rate calculations based on the Wentzel-Kramers-Brillouin (WKB) approximation or Zhu-Nakamura (ZN) theory have been carried out based on the ab initio PESs calculated in the (one, two, or three) reduced dimensions to be compared with the experiment. Though the quantitative experimental results could not be reproduced satisfactorily by the present calculations, the qualitative trends among different molecules in terms of the behavior of the tunneling rate versus the (adiabatic) barrier height or the number of PES dimensions could be rationalized. Most interestingly, the H/D kinetic isotope effect observed in the tunneling rate could be much better explained by the ZN theory compared to the WKB approximation, indicating that the nonadiabatic coupling matrix elements should be invoked for understanding the tunneling dynamics taking place in the proximity of the conical intersection.
RESUMO
Molecular structures in the electronically excited (S1) and cationic (D0) states of 2-fluorothioanisole (2-FTA) have been precisely refined from the real-time dynamics of the femtosecond (fs) wavepacket prepared by the coherent excitation of the Franck-Condon active out-of-plane torsional modes in the S1 â S0 transition at 285 nm. The simulation to reproduce the experiment in terms of the beating frequencies gives the nonplanar geometry of 2-FTA in S1, where the out-of-plane dihedral angle (φ) of the S-CH3 moiety is 51° with respect to the molecular plane. The behavior of the fs wavepacket in terms of the amplitudes and phases with the change of the probe (ionization) wavelength (λprobe = 300-330 nm) provides the otherwise veiled structure of the cationic D0 state. While the 2-FTA cation adopts the planar geometry (φ = 0°) at the global minimum, it is found to have a vertical minimum at φ ≈ 135° from the perspective of the D0 â S1 vertical transition. Ab initio calculations support the experiment quite well although the simulation using the model potentials could improve the match with the experiment, giving the new interpretation for the previously disputed photoelectron spectroscopic results.
RESUMO
The S1-state decaying rates of the three different benzenediols, catechol, resorcinol, and hydroquinone, and their 1:1 water clusters have been state-specifically measured using the picosecond time-resolved parent ion transients obtained by the pump (excitation) and probe (ionization) scheme. The S1 lifetime of catechol is found to be short, giving τ â¼ 5.9 ps at the zero-point level. This is ascribed to the H-atom detachment from the free OH moiety of the molecule. Consistent with a previous report (J. Phys. Chem. Lett. 2013, 4, 3819-3823), the S1 lifetime gets lengthened with low-frequency vibrational mode excitations, giving τ â¼ 9.0 ps for the 116 cm-1 band. The S1 lifetimes at the additional vibronic modes of catechol are newly measured, showing the nonnegligible mode-dependent fluctuations of the tunneling rate. When catechol is complexed with water, the S1 lifetime is enormously increased to τ â¼ 1.80 ns at the zero-point level while it shows an unusual dip at the intermolecular stretching mode excitation (τ â¼ 1.03 ns at 146 cm-1). Otherwise, it is shortened monotonically with increasing the internal energy, giving τ â¼ 0.67 ns for the 856 cm-1 band. Two different asymmetric or symmetric conformers of resorcinol give the respective S1 lifetimes of 4.5 or 6.3 ns at their zero-point levels according to the estimation from our transients taken within the temporal window of 0-2.7 ns. When resorcinol is 1:1 complexed with H2O, the S1 decaying rate is slightly accelerated for both conformers. The S1 lifetimes of trans and cis forms of hydroquinone are measured to be more or less same, giving τ â¼ 2.8 ns at the zero-point level. When H2O is complexed with hydroquinone, the S1 decaying process is facilitated for both conformers, slightly more efficiently for the cis conformer.
RESUMO
Photofragmentation dynamics of cis and trans isomers of 1,2-dibromoethylene (1,2-DBE) have been investigated by multiphoton excitation using a picosecond (ps) laser pulse. It has been found that the Br2 + product ion preferentially originates from the cis isomer rather than from trans. The Boltzmann-type isotropic low kinetic energy components of the Br+ and Br2 + product state distributions seem to be most likely from the unimolecular reactions of the vibrationally hot cationic ground state generated by the three-photon absorption at the photon energy below â¼38 000 cm-1. The highly anisotropic kinetic energy components of Br+ and Br2 + start to appear at the photon energy above â¼38 000 cm-1, where the Dn (n ≥ 1) - D0 transition is facilitated within the same ps laser pulse as the parent molecule is efficiently ionized by the two-photon absorption. The transition dipole moment of the D4 - D0 transition of the strongest oscillator strength has been theoretically predicted to be parallel to the C-Br bond or C=C bond axis for the trans or cis isomer, respectively. The fast anisotropic with the (ß â¼ +2) component in the Br+ product distribution is thus likely from the trans isomer, whereas that of Br2 + (ß â¼ -0.5) should be the consequence of the photodissociation of the cis isomer. The isomer-specific reactivity found here in the picosecond multiphoton excitation of 1,2-DBE provides a nice platform for the better understanding of the structure-reactivity relationship under the harsh condition of the strong or ultrashort optical field.
RESUMO
Trans and cis conformers of 3-methylthioanisole have been spectroscopically investigated to reveal the conformer specific structural changes upon the S1(ππ*)-S0 excitation. The conformational cooling during the supersonic expansion is found to be quite efficient in the Ar carrier gas giving the trans conformational isomer exclusively in the molecular beam, whereas both trans and cis conformers are populated in the jet when the sample is carried in Ne. Using the Stark deflector, trans and cis conformers are unambiguously identified, showing the distinct Stark deflection profiles according to their sufficiently different dipole moments of 1.013 or 1.670 D, respectively. For the trans conformer, the methyl moiety on the meta-position adopting the eclipsed geometry in S0 transforms into the staggered geometry in S1 to activate a series of the CH3 torsional mode. A Hamiltonian with the one-dimensional sinusoidal torsional potential is solved using the free-rotor basis set to explain the experiment, giving the 3-fold torsional barrier of 34 and 304 cm-1 for S0 and S1, respectively. For the cis conformer, on the other hand, the CH3 torsion is little activated in the S1-S0 transition as both S0 and S1 adopt the staggered geometry at the minimum energy points. The doublet of each band of the cis conformer is ascribed to tunneling split due to the very low CH3 torsional barrier of 27 cm-1 in S0. It is found that the cis conformer undergoes a planar to pseudoplanar structural change upon the S1-S0 transition. Theoretical calculation based on the double-well model potential curve could explain the experiment quite well, suggesting that the SCH3 moiety of the cis conformer in S1 becomes out-of-plane with respect to the plane of the phenyl moiety. This implies that excited-state predissociation dynamics of trans and cis conformers of the title molecule might be different.
RESUMO
Vibronic spectroscopy and the S-H bond predissociation dynamics of 2-methoxythiophenol (2-MTP) in the S1 (ππ*) state have been investigated for the first time. Resonant two-photon ionization and slow-electron velocity map imaging (SEVI) spectroscopies have revealed that the S1-S0 transition of 2-MTP is accompanied with the planar to the pseudoplanar structural change along the out-of-plane ring distortion and the tilt of the methoxy moiety. The S1 vibronic bands up to their internal energy of â¼1000 cm-1 are assigned from the SEVI spectra taken via various S1 vibronic intermediate states with the aid of ab initio calculations. Intriguingly, Fermi resonances have been identified for some vibronic bands. The S-H bond breakage of 2-MTP occurs via tunneling through an adiabatic barrier under the S1/S2 conical intersection seam, and it is followed by the bifurcation into either the adiabatic or nonadiabatic channel at the S0/S2 conical intersection where the diabatic S2 state (πσ*) is unbound with respect to the S-H bond elongation coordinate, giving the excited (Ã) or ground (XÌ) state of the 2-methoxythiophenoxy radical, respectively. Surprisingly, the nonadiabatic transition probability at the S0/S2 conical intersection, estimated from the velocity map ion images of the nascent D fragment from 2-MTP-d1 (2-CH3O-C6H4SD) at the S1 zero-point energy level, is found to be exceptionally high to give the XÌ/à product branching ratio of 2.03 ± 0.20, which is much higher than the value of â¼0.8 estimated for the bare thiophenol at the S1 origin. It even increases to 2.33 ± 0.17 at the ν45 2 mode (101 cm-1) before it rapidly decays to 0.69 ± 0.05 at the S1 internal energy of about 2200 cm-1. This suggests that the strong intramolecular hydrogen bonding of Sâ¯Dâ¯OCH3 in 2-MTP at least in the low S1 internal energy region should play a significant role in localizing the reactive flux onto the conical intersection seam. The minimum energy pathway calculations (second-order coupled-cluster resolution of the identity or time-dependent-density functional theory) of the adiabatic S1 state suggest that the intimate dynamic interplay between the S-H bond cleavage and intramolecular hydrogen bonding could be crucial in the nonadiabatic surface hopping dynamics taking place at the conical intersection.
RESUMO
Conformational isomers of hydroquinone and their 1:1 clusters with water have been spatially separated using a Stark deflector in a supersonic jet. trans-Hydroquinone (HyQ) conformer with zero dipole moment is little influenced by inhomogeneous electric fields, whereas cis conformer with nonzero dipole moment (2.38 D) is significantly deflected from the molecular beam axis into the direction along which the strong field gradient is applied. Resonant two photon ionization carried out by shifting the laser position perpendicular to the molecular beam axis after the Stark deflector then gives an exclusive S1-S0 excitation spectrum of the cis conformer only, making possible immaculate conformer-specific spectroscopy and dynamics. As the spatial separation is apparently proportional to the effective dipole moment strength, conformational assignment could be absolute in the Stark deflector, which contrasts with the hole-burning spectroscopic technique where identification of a conformational isomer is intrinsically not unambiguous. trans- and cis-HyQ-H2O clusters have also been spatially separated according to their distinct effective dipole moment strengths to give absolute spectroscopic identification of each cluster isomer, nailing down the otherwise disputable conformational assignment. This is the first report for the spatial separation of conformational cluster isomers.
RESUMO
We report the first experimental observation of the excited dipole-bound state (DBS) of the cryogenically cooled nitromethane anion (CH3NO2-), where the excess electron is loosely attached to the singlet or triplet neutral-core. Photofragment and photodetachment action spectra have been employed for the dynamic exploration of Feshbach resonances located even far above the electron detachment threshold, giving excitation profiles from the ground anionic state (D0) to the DBSs which match quite well with the spectral structures of the photoelectron spectra. This indicates that the electron transfer from the nonvalence orbital (of DBS) to the valence orbital (of anion) is mainly responsible for the anionic fragmentation channels, giving strong evidence for that the DBS plays a dynamic doorway-role in the anionic fragmentation reactions. Photofragment action spectra have also been obtained for the anionic clusters of (CH3NO2)2-, (CH3NO2)3-, or (CH3NO2·H2O)-, giving the relative yields of various fragments as a function of the excitation energy for each cluster. The absorption profiles of the anionic clusters exhibit substantial blue-shifts compared to the bare nitromethane anion as their ground states are much stabilized by solvation. The anionic fragmentation pattern varies among different clusters, giving essential clues for the thorough understanding of the whole anionic dynamics such as the dynamic role of the short-lived nonvalence-bound states of the clusters.
RESUMO
The dynamic role of the intramolecular hydrogen bond in the S1 relaxation of cis-2-chlorophenol (2-CP) or cis-2-chlorothiophenol (2-CTP) has been investigated in a state-specific manner. Whereas ultrafast internal conversion is dominant for 2-CP, the H-tunneling competes with internal conversion for 2-CTP even at the S1 origin. The S0-S1 internal conversion rate of 2-CTP could be directly measured from the S1 lifetimes of 2-CTP-d1 (Cl-C6H4-SD) as the D-tunneling is kinetically blocked, allowing distinct estimations of tunneling and internal conversion rates with increasing the energy. The internal conversion rate of 2-CTP increases by two times at the out-of-plane torsional mode excitation, suggesting that the internal conversion is facilitated at the nonplanar geometry. It then sharply increases at â¼600 cm-1, indicating that the S1/S0 conical intersection is readily accessible at the extended C-Cl bond length. The strength of the intramolecular hydrogen bond should be responsible for the distinct dynamic behaviors of 2-CP and 2-CTP.
RESUMO
BACKGROUND: The stability index estimation algorithm was derived and applied to develop and implement a balance ability diagnosis system that can be used in daily life. METHODS: The system integrated an approach based on sensory function interaction, called the clinical test of sensory interaction with balance. A capacitance and resistance sensing type force mat was fabricated, and a stability index prediction algorithm was developed and applied using the center of pressure variables. The stability index prediction algorithm derived a center of pressure variable for 103 elderly people by Nintendo Wii Balance Board to predict the stability index of the balance system (Biodex SD), and the accuracy of this approach was confirmed. RESULTS: As a result of testing with the test set, the linear regression model confirmed that the r-value ranged between 0.943 and 0.983. To confirm the similarity between the WBB and the flexible force mat, each measured center of pressure value was inputted and calculated in the developed regression model, and the result of the correlation coefficient validation confirmed an r-value of 0.96. CONCLUSION: The system developed in this study will be applicable to daily life in the home in the form of a floor mat.
RESUMO
Objectives: To confirm the characteristics of gait events and muscle activity in the lower limbs of the affected and unaffected sides in patients with hemiplegia. Design: Cross-sectional study. Setting: Motion analysis laboratory of the Wonkwang University Gwangju Hospital. Participants: Outpatients, diagnosed with ischemic stroke more than 3 months and less than 9 months before participating in the study (N=29; 11 men, 18 women). Interventions: Not applicable. Main Outcome Measures: The gait event parameters and time- and frequency-domain electromyogram (EMG) parameters of the lower limbs of the affected and unaffected sides was determined using BTS motion capture with the Delsys Trigno Avanti EMG wireless system. Results: The swing time, stance phase, swing phase, single support phase, and median power frequency of the gastrocnemius muscle showed a significant difference between the affected and unaffected sides. Using a logistic regression model, the swing phase, single support phase, and median frequency of the gastrocnemius muscle were selected to classify the affected side. Conclusion: The single support phase of the affected side is shortened to reduce load bearing, which causes a reduction in the stance phase ratio. Unlike gait-event parameters, EMG data of hemiplegic stroke patients are difficult to generalize. Among them, the logistic regression model with some affected side parameters expected to be set as the severity and improvement baseline of the affected side. Additional data collection and generalization of muscle activity is required to improve the classification model.
RESUMO
The dynamic role of the conical intersection "seam" coordinate has been first revealed in the H fragmentation reaction of ortho(o)-cresol conformers. One of the (3N - 8) dimensional seam coordinates of the S1(ππ*)/S2(πσ*) conical intersection has been identified as the CH3 torsional potential function. The tunneling dynamics of the reactive flux is dictated by its nuclear layout with respect to the CH3 torsional angle, as the multidimensional tunneling barrier is dynamically shaped along the conical intersection seam. The effective tunneling-barrier weight-averaged over the quantum-mechanical probability along the CH3 torsional angle perfectly explains the experimental finding: the sharp variation of the tunneling rate ((700-400) ps-1) with the CH3 torsional mode excitations within the narrow (0-100 cm-1) energetic window. The much longer S1 lifetime of cis compared to trans is ascribed to the higher-lying S1/S2 conical intersection of the former. With the use of distinct lifetimes, vibronic bands of each conformer could be completely separated.
RESUMO
Non-thermal plasma (NTP) is widely used in the disinfection and surface modification of biomaterials. NTP treatment can regenerate and improve skin function; however, its effectiveness on hair follicle (HF) growth and its underlying mechanisms need to be elucidated. Herein, we propose an air-based NTP treatment, which generates exogenous nitric oxide (eNO), as a therapeutic strategy for hair growth. The topical application of air-based NTP generates large amounts of eNO, which can be directly detected using a microelectrode NO sensor, in the dermis of mouse dorsal skin. Additionally, NTP-induced eNO has no cytotoxicity in normal human skin cells and promotes hair growth by increasing capillary tube formation, cellular proliferation, and hair/angiogenesis-related protein expression. Furthermore, NTP treatment promotes hair growth with adipogenesis and activation of CD34+CD44+ stem cells and improves the inter-follicular macroenvironment via increased perifollicular vascularity in the mouse hair regrowth model. Given the importance of the hair follicle (HF) cycle ratio (growth vs. regression vs. resting) in diagnosing alopecia, NTP treatment upregulates the stem cell activity of the HF to promote the anagen : catagen : telogen ratio, leading to improved hair growth. We confirmed the upregulation of increasing Wnt/ß-catenin signaling and activation of perifollicular adipose tissue and angiogenesis in HF regeneration. In conclusion, these results show that the eNO from NTP enhances the cellular activities of human skin cells and endothelial cells in vitro and stem cells in vivo, thereby increasing angiogenesis, adipogenesis, and hair growth in the skin dermis. Furthermore, the results of this study suggest that NTP treatment may be a highly efficient alternative in regenerative medicine for achieving enhanced hair growth.
RESUMO
Autler-Townes (AT) splitting has been experimentally observed in the optical transition between the zero-point levels of S1 and S0 for supersonically cooled 2-methoxythiophenol, 2-fluorothiophenol, and 2-chlorothiophenol. This is the first experimental observation of the light-dressed quantum states of polyatomic molecules (N > 3) in the electronic transition. In the resonance-enhanced ionization process involving the optically coupled states, if Rabi cycling is ensured within the nanosecond laser pulse, AT splitting is clearly observed for the open system for which the excited-state lifetime is shorter than hundreds of picoseconds. Semiclassical optical Bloch equations and a dressed-atom approach based on the three-level atomic model describe the experiment quite well, giving deep insights into the light-matter interaction in polyatomic molecular systems.
RESUMO
BACKGROUND: Gait variability and fractal dynamics may be affected by the walking duration. OBJECTIVE: The purpose of this study is to examine the reproducibility of stride time while walking on a self-paced treadmill. METHODS: Fifteen young and healthy subjects walked on the treadmill for 10 minutes. Three to eight minutes duration of the data were used to compare the trial-to-trial and day-to-day reproducibility of the average, variability, and fractal dynamics of stride time. RESULTS: The results show that all variables had high trial-to-trial reproducibility. In the day-to-day results, the average walking speed and mean stride time showed reproducibility without regard for duration, but the variability and gait fractal dynamics showed differences in reproducibility according to duration. The variability and fractal dynamics showed better reproducibility in less than 5 minutes and over time, respectively. However, both variables generally showed improved reproducibility when average data from two to three rounds were used. CONCLUSION: Based on the results of this study, it is proposed that variability should be examined using data of 5 min or less, and fractal dynamics should be examined using 5 min or more of repeated data when performing walking tests from a gait dynamics perspective.
Assuntos
Caminhada/fisiologia , Fenômenos Biomecânicos , Teste de Esforço , Fractais , Marcha/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto JovemRESUMO
We developed a two-step chemical bonding process using photosensitizer molecules to fabricate photofunctional nanolayer coatings on hematoporphyrin- (HP-) coated Ti substrates. In the first step, 3-aminopropyltriethoxysilane was covalently functionalized onto the surface of the Ti substrates to provide heterogeneous sites for immobilizing the HP molecules. Then, HP molecules with carboxyl groups were chemically attached to the amine-terminated nanolayer coatings via a carbodiimide coupling reaction. The microstructure and elemental and phase composition of the HP-coated Ti substrates were investigated using field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The photophysical properties of the photofunctional nanolayer coatings were confirmed using reflectance ultraviolet-visible absorption and emission spectrophotometry. The singlet oxygen generation efficiency of the photofunctional nanolayer coatings was determined using the decomposition reaction of 1,3-diphenylisobenzofuran. The HP-coated Ti substrates exhibited good biocompatibility without any cytotoxicity, and these nanolayer coatings generated singlet oxygen, which can kill microorganisms using only visible light.