Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Syst Evol Microbiol ; 69(3): 610-615, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30372407

RESUMO

A bacterial strain, designated as ISE14T, with Gram-stain-negative and non-motile rod-shaped cells, was isolated from the root of a cucumber plant collected in a field in Iksan, Republic of Korea and was characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISE14T represented a member of the genus Chryseobacterium and was closely related to Chryseobacterium viscerum 687B-08T (16S rRNA gene sequence similarity of 98.50 %), Chryseobacterium lactis NCTC 11390T (98.49 %), Chryseobacterium ureilyticum F-Fue-04IIIaaaaT (98.49 %) and Chryseobacterium oncorhynchi 701B-08T (98.04 %). Average nucleotide identity values between genome sequences of strain ISE14T and the closely related species ranged from 81.44 to 83.15 %, which were lower than the threshold of 95 % (corresponding to a DNA-DNA hybridization value of 70 %). The DNA G+C content of strain ISE14T was 36.3 mol%. The dominant fatty acids were iso-C15 : 0, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and iso-C17 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, three unidentified aminolipids and eight unidentified lipids; the predominant respiratory quinone was MK-6. On the basis of the evidence presented in this study, strain ISE14T can be distinguished from closely related species belonging to the genus Chryseobacterium. Thus, strain ISE14T is a novel species of the genus Chryseobacterium, for which the name Chryseobacteriumphosphatilyticum sp. nov. is proposed. The type strain is ISE14T (=KACC 19820T=JCM 32876T).


Assuntos
Chryseobacterium/classificação , Cucumis sativus/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Chryseobacterium/isolamento & purificação , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfatos , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
Int J Syst Evol Microbiol ; 67(3): 610-616, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27902284

RESUMO

The Gram-stain-negative, yellow-pigmented, rod-shaped bacterial strain GSE06T, isolated from the surface-sterilized root of a cucumber plant grown in a field in Gunsan, Korea, was characterized by not only cultural and morphological features but also physiological, biochemical and molecular analyses. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GSE06T was most closely related to species of the genus Chryseobacterium. Furthermore, strain GSE06T exhibited the highest sequence similarities with the type strains Chryseobacterium indologenes ATCC 29897T (98.9 %), Chryseobacterium gleum ATCC 35910T (98.8 %), Chryseobacterium arthrosphaerae CC-VM-7T (98.7 %), Chryseobacterium contaminans C26T (98.5 %), Chryseobacterium artocarpi UTM-3T (98.3 %), and Chryseobacterium gallinarum 100T (97.9 %). Average nucleotide identity values between genome sequences of strain GSE06T and the above-mentioned reference strains ranged from 81.2 to 86.9 %, which were lower than the threshold of 95 % (corresponding to a DNA-DNA reassociation value of 70 %). The DNA G+C content of strain GSE06T was 36.1 mol%; the predominant respiratory quinone of the strain was MK-6. The major fatty acids were iso-C15 : 0, summed feature 9 (iso-C17 : 1ω9c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and iso-C17 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, three aminolipids, one aminophospholipid, four glycolipids and one unidentified lipid. These results of phenotypic and genotypic characteristics could differentiate strain GSE06T from closely related type strains belonging to the genus Chryseobacterium. Thus, strain GSE06T is proposed as a representative of a novel species in the genus Chryseobacterium, Chryseobacterium cucumeris sp. nov. The type strain is GSE06T (=KACC 18798T=JCM 31422T).


Assuntos
Chryseobacterium/classificação , Cucumis sativus/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Chryseobacterium/genética , Chryseobacterium/isolamento & purificação , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
3.
Phytopathology ; 104(8): 834-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24502209

RESUMO

Induced systemic resistance (ISR) can be activated by biotic agents, including root-associated beneficial bacteria to inhibit pathogen infection. We investigated priming-mediated ISR in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare (causal fungus of anthracnose). In addition, we examined whether this ISR expression was bacterial density-dependent by assessing peroxidase activity in the presence and absence of the pathogen. As a result, root treatment with the ISR-eliciting strains GC-B19 and MM-B22 or the chemical inducer DL-ß-amino-n-butyric acid (positive control) significantly inhibited fungal infection process (conidial germination and appressorium formation) and disease severity compared with the non-ISR-eliciting strain, Pseudomonas aeruginosa PK-B09 (negative control), and MgSO4 solution (untreated control). These treatments effectively induced rapid elicitation of hypersensitive reaction-like cell death with H2O2 generations, and accumulation of defense-related enzymes (ß-1,3-glucanase, chitinase, and peroxidase) in cucumber leaves in the "primed" state against C. orbiculare. In addition, ISR expression was dependent on the bacterial cell density in the rhizosphere. This ISR expression was derived from the presence of sustained bacterial populations ranging from 10(4) to 10(6) cells/g of potting mix over a period of time after introduction of bacteria (10(6) to 10(10) cells/g of potting mix) into the rhizosphere. Taken together, these results suggest that priming-mediated ISR against C. orbiculare in cucumber can be induced in a bacterial density-dependent manner by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22.


Assuntos
Colletotrichum/fisiologia , Cucumis sativus/imunologia , Resistência à Doença , Paenibacillus/fisiologia , Doenças das Plantas/imunologia , Pseudomonas/fisiologia , Sequência de Bases , Quitinases/metabolismo , Cucumis sativus/enzimologia , Cucumis sativus/microbiologia , Cucumis sativus/fisiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Regulação da Expressão Gênica de Plantas , Glucana 1,3-beta-Glucosidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Dados de Sequência Molecular , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Peroxidase/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/enzimologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Rizosfera , Análise de Sequência de DNA
4.
Int J Syst Evol Microbiol ; 63(Pt 8): 2835-2840, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23315413

RESUMO

The yellow-pigmented, Gram-stain-negative, rod-shaped bacterium KJ1R5(T) was isolated from the root of a pepper plant grown in a field in Kwangju, Korea. Strain KJ1R5(T) was characterized by physiological, biochemical, and molecular genetic analyses. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain KJ1R5(T) was most closely related to members of the genus Chryseobacterium, and that the strain exhibited the highest similarities with type strains of Chryseobacterium vrystaatense (97.0 %) and Chryseobacterium rhizosphaerae (97.1 %). DNA-DNA hybridization reassociation values between strain KJ1R5(T) and type strains of C. vrystaatense KACC 11675(T) and C. rhizosphaerae KACC 14918(T) were 46.9 and 38.4 %, respectively. The DNA G+C content of KJ1R5(T) is 40.2 mol%. The predominant respiratory quinone of KJ1R5(T) was menaquinone MK-6; major cellular fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C17 : 1ω9c, and iso-C17 : 0 3-OH. On the basis of these phenotypic and genotypic characteristics, the strain significantly differed from representative strains belonging to the genus Chryseobacterium. Thus, we propose that strain KJ1R5(T) represents a novel species of the genus Chryseobacterium, named Chryseobacterium kwangjuense sp. nov. The type strain is KJ1R5(T) (= KACC 13029(T) = JCM 15904(T)).


Assuntos
Capsicum/microbiologia , Chryseobacterium/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Chryseobacterium/genética , Chryseobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
5.
Plant Pathol J ; 39(1): 123-135, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36760054

RESUMO

Previously, Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 from a sequential screening procedure were proven to effectively control Phytophthora blight caused by Phytophthora capsici. In this study, we further investigated the anti-oomycete activities of these strains against mycelial growth, zoospore germination, and germ tube elongation of P. capsici. We also investigated root colonization ability of the bacterial strains in square dishes, including cell motility (swimming and swarming motilities) and biofilm formation. Both strains significantly inhibited mycelial growth in liquid and solid V8 juice media and M9 minimal media, zoospore germination, and germ tube elongation compared with Bacillus vallismortis EXTN-1 (positive biocontrol strain), Sphingomonas aquatilis KU408 (negative biocontrol strain), and MgSO4 solution (untreated control). In diluted (nutrient-deficient) V8 juice broth, the tested strain populations were maintained at >108 cells/ml, simultaneously providing mycelial inhibitory activity. Additionally, these strains colonized pepper roots at a 106 cells/ml concentration for 7 days. The root colonization of the strains was supported by strong swimming and swarming activities, biofilm formation, and chemotactic activity towards exudate components (amino acids, organic acids, and sugars) of pepper roots. Collectively, these results suggest that strains YJR13 and YJR92 can effectively suppress Phytophthora blight of pepper through direct anti-oomycete activities against mycelial growth, zoospore germination and germ tube elongation. Bacterial colonization of pepper roots may be mediated by cell motility and biofilm formation together with chemotaxis to root exudates.

6.
Mycobiology ; 51(5): 313-319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929002

RESUMO

During disease surveys of Angelica acutiloba plants in Korea, leaf spot symptoms were observed in a field in Andong in July 2019, and stem rot symptoms in vinyl greenhouses in Yangpyeong in April 2020. Incidence of leaf spot and stem rot of the plants ranged from 10 to 20% and 5 to 30%, respectively. Morphological and cultural characteristics of fungal isolates from the leaf spot and stem rot symptoms fitted into those of the genus Phoma. Molecular phylogenetic analyses of two single-spore isolates from the symptoms using concatenated sequences of LSU, ITS, TUB2, and RPB2 genes authenticated an independent cluster from other Didymella (anamorph: Phoma) species. Moreover, the isolates showed different morphological and cultural characteristics in comparison to closely related Didymella species. These discoveries confirmed the novelty of the isolates. Pathogenicity of the novel Didymella species isolates was substantiated on leaves and stems of A. acutiloba through artificial inoculation. Thus, this study reveals that Didymella acutilobae sp. nov. causes leaf spot and stem rot in Angelica acutiloba.

7.
Mycobiology ; 51(6): 393-400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179122

RESUMO

During a disease survey in October 2019, leaf spot symptoms with a yellow halo were observed on Korean angelica (Anglica gigas) plants grown in fields in Pyeongchang, Gangwon Province, Korea. Incidence of diseased leaves of the plants in the investigated fields ranged from 10% to 60%. Morphological and cultural characteristics of two single-spore isolates from the leaf lesions indicated that they belonged to the genus Didymella. Molecular phylogenetic analyses using combined sequences of LSU, ITS, TUB2, and RPB2 regions showed distinct clustering of the isolates from other Didymella species. In addition, the morphological and cultural characteristics of the isolates were somewhat different from those of closely related Didymella spp. Therefore, the novelty of the isolates was proved based on the investigations. Pathogenicity of the novel Didymella species isolates was confirmed on leaves of Korean angelica plants via artificial inoculation. This study reveals that Didymella gigantis sp. nov. causes leaf spot in Korean angelica.

8.
Mycobiology ; 51(4): 195-209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711983

RESUMO

The seed borne disease such as bakanae is difficult to control. Crop yield loss caused by bakanae depending on the regions and varieties grown, ranging from 3.0% to 95.4%. Bakanae is an important disease of rice worldwide and the pathogen was identified as Fusarium fujikuroi Nirenberg (teleomorph: Gibberella fujikuroi Sawada). Currently, four Fusaria (F. fujikuroi, F. proliferatum, F. verticillioides and F. andiyazi) belonging to F. fujikuroi species complex are generally known as the pathogens of bakanae. The infection occurs through both seed and soil-borne transmission. When infection occurs during the heading stage, rice seeds become contaminated. Molecular detection of pathogens of bakanae is important because identification based on morphological and biological characters could lead to incorrect species designation and time-consuming. Seed disinfection has been studied for a long time in Korea for the management of the bakanae disease of rice. As seed disinfectants have been studied to control bakanae, resistance studies to chemicals have been also conducted. Presently biological control and resistant varieties are not widely used. The detection of this pathogen is critical for seed certification and for preventing field infections. In South Korea, bakanae is designated as a regulated pathogen. To provide highly qualified rice seeds to farms, Korea Seed & Variety Service (KSVS) has been producing and distributing certified rice seeds for producing healthy rice in fields. Therefore, the objective of the study is to summarize the recent progress in molecular identification, fungicide resistance, and the management strategy of bakanae.

9.
Mycobiology ; 50(5): 269-293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36404903

RESUMO

Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

10.
Mycobiology ; 50(6): 475-486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36721790

RESUMO

The antifungal activity of thymol against Aspergillus awamori F23 and Botrytis aclada F15 in onions was examined through direct treatment with amended media and gaseous treatment with I-plates (plastic plates containing central partitions). The protective and curative control efficacy of thymol was examined 24 h before and after the inoculation of onion bulbs with the fungal isolates. Mycelial growth, sporulation, and spore germination of the isolates were inhibited on potato dextrose agar amended with various concentrations of thymol or acetic acid (positive control). Overall, thymol produced a stronger inhibitory effect on the mycelial growth and development of the isolates than acetic acid. Following gaseous treatment in I-plates, mycelial growth, sporulation, and spore germination of the isolates were inhibited at higher concentrations of thymol or acetic acid; however, acetic acid showed a little effect on the sporulation and spore germination of the isolates. Following the treatment of onion bulbs with 1000 mg L-1 of thymol 24 h before and after fungal inoculation, lesion diameter was greatly reduced compared with that following treatment with 0.5% ethanol (solvent control). Onion bulbs sprayed with thymol 24 h before fungal inoculation generally showed reduced lesion diameters by isolate F23 but not in isolate F15 compared with those sprayed 24 h after fungal inoculation. Collectively, thymol effectively inhibited the growth and development of A. awamori and B. aclada on amended media and in I-plates. In addition, spraying or fumigation of thymol is more desirable for effectively controlling these postharvest fungal pathogens during long-term storage conditions.

11.
Phytopathology ; 101(6): 732-40, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21281115

RESUMO

We investigated direct and indirect effects of compost water extracts (CWEs) from Iljuk-3, Iljuk-7, Shinong-8, and Shinong-9 for the control of anthracnoses caused by Colletotrichum coccodes on pepper and C. orbiculare on cucumber. All tested CWEs significantly (P < 0.05) inhibited in vitro conidial germination and appressorium formation of the fungal pathogens; however, DL-ß-amino-n-butyric acid (BABA) failed to inhibit the conidial development of the pathogens. Direct treatments of the CWEs and BABA on pepper and cucumber leaves at 1 and 3 days before or after inoculation significantly (P < 0.05) reduced anthracnose severities; Iljuk-3, Shinong-9, and BABA for pepper and Iljuk-7 for cucumber had more protective activities than curative activities. In addition, root treatment of CWEs suppressed anthracnoses on the plants by the pathogens; however, CWE treatment on lower leaves failed to reduce the diseases on the upper leaves of the plants. The CWE root treatments enhanced not only the expression of the pathogenesis-related (PR) genes CABPR1, CABGLU, CAChi2, CaPR-4, CAPO1, and CaPR-10 in pepper and PR1-1a, PR-2, PR-3, and APOX in cucumber but also the activity of ß-1,3-glucanase, chitinase, and peroxidase and the generation of hydrogen peroxide in pepper and cucumber under pathogen-inoculated conditions. However, the CWE treatments failed to induce the plant responses under pathogen-free conditions. These results indicated that the CWEs had direct effects, reducing anthracnoses by C. coccodes on pepper leaves and C. orbiculare on cucumber leaves through protective and curative effects. In addition, CWE root treatments could induce systemic resistance in the primed state against pathogens on plant leaves that enhanced PR gene expression, defense-related enzyme production, and hydrogen peroxide generation rapidly and effectively immediately after pathogen infection. Thus, the CWEs might suppress anthracnoses on leaves of both pepper and cucumber through primed (priming-mediated) systemic resistance.


Assuntos
Capsicum/imunologia , Capsicum/microbiologia , Colletotrichum/patogenicidade , Cucumis sativus/imunologia , Cucumis sativus/microbiologia , Doenças das Plantas/microbiologia , Capsicum/genética , Capsicum/metabolismo , Colletotrichum/crescimento & desenvolvimento , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Controle Biológico de Vetores , Doenças das Plantas/imunologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Solo
12.
Phytopathology ; 101(6): 666-78, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21405997

RESUMO

We previously selected rhizobacterial strains CCR04, CCR80, GSE09, ISE13, and ISE14, which were antagonistic to Phytophthora blight of pepper. In this study, we investigated the effects of root treatment of rhizobacteria on anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field in 2008 and 2009. We also examined the effects of volatiles produced by the strains on fruit ripening and on mycelial growth and spore development of Colletotrichum acutatum and Phytophthora capsici in the laboratory, identifying the volatile compounds by gas chromatography-mass spectrometry (GC-MS). In the house tests, all strains significantly (P < 0.05) reduced anthracnose incidence on pepper fruit; strains GSE09 and ISE14 consistently produced higher numbers of pepper fruit or increased the fresh weight of red fruit more than the controls in both years. In the field tests, all strains significantly (P < 0.05) reduced anthracnose occurrence on either green or red pepper fruit; strain ISE14 consistently produced higher numbers or increased fresh weights of red fruit more than the controls in both years. In the laboratory tests, volatiles produced by strains GSE09 and ISE13 only stimulated maturation of pepper fruit from green (unripe) to red (ripe) fruit; the volatiles of certain strains inhibited the growth and development of C. acutatum and P. capsici. On the other hand, GC-MS analysis of volatiles of strains GSE09 and ISE13 revealed 17 distinct compounds in both strains, including decane, dodecane, 1,3-di-tert-butylbenzene, tetradecane, 2,4-di-tert-butylphenol, and hexadecane. Among these compounds, 2,4-di-tert-butylphenol only stimulated fruit ripening and inhibited growth and development of the pathogens. Taken together, strains GSE09 and ISE14 effectively reduced anthracnose occurrence and stimulated pepper fruit ripening and yield, possibly via bacterial volatiles. Therefore, these two strains could be potential agents for controlling Phytophthora blight and anthracnose, and for increasing fruit ripening and yield. To our knowledge, this is the first report of volatiles such as 2,4-di-tert-butylphenol produced by rhizobacteria being related to both fruit ripening and pathogen inhibition.


Assuntos
Capsicum/efeitos dos fármacos , Capsicum/microbiologia , Colletotrichum/efeitos dos fármacos , Fenóis/farmacologia , Phytophthora/efeitos dos fármacos , Doenças das Plantas/terapia , Capsicum/fisiologia , Chryseobacterium/química , Chryseobacterium/metabolismo , Colletotrichum/classificação , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/patogenicidade , Flavobacterium/química , Flavobacterium/metabolismo , Frutas/efeitos dos fármacos , Frutas/microbiologia , Frutas/fisiologia , Proteínas Fúngicas/genética , Cromatografia Gasosa-Espectrometria de Massas , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Lysobacter/química , Lysobacter/metabolismo , Fenóis/química , Filogenia , Phytophthora/classificação , Phytophthora/crescimento & desenvolvimento , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/estatística & dados numéricos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Pseudomonas/química , Pseudomonas/metabolismo , Análise de Sequência de DNA , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
13.
Plant Pathol J ; 37(4): 347-355, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34365746

RESUMO

Ripe rot caused by Botryosphaeria dothidea is one of the serious diseases of postharvest kiwifruit. In order to control ripe rot on Actinidia chinensis cultivar 'Zesy002', several commercial agrofungicides were selected by an antifungal test on an artificial medium. Furthermore, disease suppression by the selected fungicides was evaluated on the kiwifruit by inoculation with a conidial suspension of B. dothidea. On the artificial media containing boscalid + fludioxonil was shown to be the most effective antifungal activity. However, in the bio-test pyraclostrobin + boscalid and iminoctadine-tris were the most effective agrochemicals on the fruit. On the other hand, the infection structures of B. dothidea on kiwifruit treated with pyraclostrobin + boscalid were observed with a fluorescent microscope. Most of the fungal conidia had not germinated on the kiwifruit treated with the agrochemicals whereas on the untreated fruit the fungal conidia had mostly germinated. Electron microscopy of the fine structures showed morphological changes to the conidia and branch of hyphae on the kiwifruit pre-treated with pyraclostrobin + boscalid, indicating its suppression effect on fungal growth. Based on this observation, it is suggested that ripe rot by B. dothidea may be suppressed through the inhibition of conidial germination on the kiwifruit treated with the agrochemicals.

14.
Phytopathology ; 100(8): 774-83, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20626281

RESUMO

We investigated the effects of water extracts of composts (CWE) from commercial compost facilities for controlling root and foliar infection of pepper plants by Phytophthora capsici. Among 47 CWE tested, CWE from composts Iljuk-3, Iljuk-7, Shinong-8, and Shinong-9 significantly (P < 0.05) inhibited zoospore germination, germ tube elongation, mycelial growth, and population of P. capsici. All selected CWE significantly (P < 0.05) reduced the disease incidence and severity in the seedling and plant assays compared with the controls. However, there were no significant differences in zoospore germination, disease incidence, and disease severity between treatments of untreated, autoclaved, and filtered CWE. In addition, CWE significantly (P < 0.05) suppressed leaf infection of P. capsici through induced systemic resistance (ISR) in plants root-drenched with CWE. The tested CWE enhanced the expression of the pathogenesis-related genes, CABPR1, CABGLU, CAChi2, CaPR-4, CAPO1, or CaPR-10 as well as beta-1,3-glucanase, chitinase, and peroxidase activities, which resulted in enhanced plant defense against P. capsici in pepper plants. Moreover, the CWE enhanced the chemical and structural defenses of the plants, including H(2)O(2) generation in the leaves and lignin accumulation in the stems. The CWE could also suppress other fungal pathogens (Colletotrichum coccodes in pepper leaves and C. orbiculare in cucumber leaves) through ISR; however, it failed to inhibit other bacterial pathogens (Xanthomonas campestris pv. vesicatoria in pepper leaves and Pseudomonas syringae pv. lachrymans in cucumber leaves). These results suggest that a heat-stable chemical(s) in the CWE can suppress root and foliar infection by P. capsici in pepper plants. In addition, these suppressions might result from direct inhibition of development and population of P. capsici for root infection, as well as indirect inhibition of foliar infection through ISR with broad-spectrum protection.


Assuntos
Capsicum/microbiologia , Phytophthora , Doenças das Plantas , Solo , Capsicum/imunologia , Capsicum/metabolismo , Colletotrichum , Lignina/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/metabolismo , Pseudomonas syringae , Xanthomonas campestris
15.
Plant Cell Rep ; 28(3): 419-27, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19089429

RESUMO

The lipid signal is essential for the activation of plant defense responses, but downstream components of the signaling pathway are still poorly defined. To investigate the biological functions of pepper lipid transfer protein (LTP), we carried out virus-induced gene silencing (VIGS) in pepper, constitutive expression of CALTPs and grafting experiments in the tobacco plant. Suppression of endogenous CALTPI and CALTPII by VIGS, respectively, resulted in enhanced susceptibility to Xanthomonas campestris pv. vescatoria and pepper mosaic mottle virus in pepper. On the other hand, the constitutive expression of CALTPI and CALTPII genes in tobacco plants showed enhanced resistance to oomycete pathogen, Phytophthora nicotianae and bacterial pathogen, Pseudomonas syringae pv. tabaci. Enhanced resistance is found to be associated with the enhanced CALTP transcript levels in the independent transgenic CALTPI or II tobacco lines. Induced resistance responses in grafted scion leaves revealed that LTP plays a role in long-distance systemic signaling in plants.


Assuntos
Proteínas de Transporte/metabolismo , Nicotiana/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Capsicum/genética , Capsicum/imunologia , Capsicum/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Imunidade Inata , Phytophthora/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Pseudomonas syringae/patogenicidade , Nicotiana/imunologia , Nicotiana/metabolismo
16.
Plant Pathol J ; 35(5): 437-444, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31632219

RESUMO

Chlorine dioxide (ClO2) has been widely used as an effective disinfectant to control fungal contamination during postharvest crop storage. In this study, Fusarium oxysporum f. sp. batatas SP-f6 from the black rot symptom of sweetpotato was isolated and identified using phylogenetic analysis of elongation factor 1-α gene; we further examined the in vitro and in vivo inhibitory activities of ClO2 gas against the fungus. In the in vitro medium tests, fungal population was significantly inhibited upon increasing the concentration and exposure time. In in vivo tests, spore suspensions were drop-inoculated onto sweetpotato slices, followed by treatment using various ClO2 concentrations and treatment times to assess fungus-induced disease development in the slices. Lesion diameters decreased at the tested ClO2 concentrations over time. When sweetpotato roots were dip-inoculated in spore suspensions prior to treatment with 20 and 40 ppm of ClO2 for 0-60 min, fungal populations significantly decreased at the tested concentrations for 30-60 min. Taken together, these results showed that ClO2 gas can effectively inhibit fungal growth and disease development caused by F. oxysporum f. sp. batatas on sweetpotato. Therefore, ClO2 gas may be used as a sanitizer to control this fungus during postharvest storage of sweetpotato.

17.
Data Brief ; 25: 104270, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31388522

RESUMO

Flavobacterium anhuiense (previously identified as Flavobacterium johnsoniae) strain GSE09 is a volatile-producing bacterium that exhibits significant biocontrol activity against an oomycete pathogen, Phytophthora capsici, on pepper plants. Here, we report the complete genome sequence data of strain GSE09, isolated from surface-sterilized cucumber root. The genome consists of a circular 5,109,718-bp chromosome with a G + C content of 34.30%. A total of 4,138 complete coding sequences including 15 rRNA, 66 tRNA, 3 ncRNA, and 51 pseudogene sequences were retrieved. Thus, the genome sequence data of F. anhuiense GSE09 may facilitate the elucidation of many biological traits related to the biocontrol against plant pathogens.

18.
Plant Pathol J ; 35(1): 77-83, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30828282

RESUMO

Chlorine dioxide (ClO2) can be used as an alternative disinfectant for controlling fungal contamination during postharvest storage. In this study, we tested the in vitro and in vivo inhibitory effects of gaseous ClO2 against Diaporthe batatas SP-d1, the causal agent of sweetpotato dry rot. In in vitro tests, spore suspensions of SP-d1 spread on acidified potato dextrose agar were treated with various ClO2 concentrations (1-20 ppm) for 0-60 min. Fungal growth was significantly inhibited at 1 ppm of ClO2 treatment for 30 min, and completely inhibited at 20 ppm. In in vivo tests, spore suspensions were drop-inoculated onto sweetpotato slices, followed by ClO2 treatment with different concentrations and durations. Lesion diameters were not significantly different between the tested ClO2 concentrations; however, lesion diameters significantly decreased upon increasing the exposure time. Similarly, fungal populations decreased at the tested ClO2 concentrations over time. However, the sliced tissue itself hardened after 60-min ClO2 treatments, especially at 20 ppm of ClO2. When sweetpotato roots were dip-inoculated in spore suspensions for 10 min prior to treatment with 20 and 40 ppm of ClO2 for 0-60 min, fungal populations decreased with increasing ClO2 concentrations. Taken together, these results showed that gaseous ClO2 could significantly inhibit D. batatas growth and dry rot development in sweetpotato. Overall, gaseous ClO2 could be used to control this fungal disease during the postharvest storage of sweetpotato.

19.
Sci Rep ; 9(1): 4909, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894572

RESUMO

Accumulating reports demonstrate that apoptosis does not explain all the effects of cancer therapy due to the innate and acquired apoptotic resistance of malignant cancer cells. Recently, paraptosis, a type of programmed cell death accompanied by dilation of mitochondria and/or the endoplasmic reticulum (ER), has garnered interest in cancer research as an alternative way to kill apoptosis-resistant cancers. We describe here the adaptation and validation of a high-content cell-based assay to screen and identify novel paraptotic regulators employing the malignant breast cancer cells undergoing curcumin-induced paraptosis. We used YFP-Mito cells, which express fluorescence selectively in mitochondria, to select paraptosis-related genes whose corresponding siRNAs appeared to modulate mitochondrial dilation, a morphological feature of paraptosis. From the selected 38 candidate genes, we chose ubiquitin specific peptidase 10 (USP10), a ubiquitin specific protease, as a strongly active candidate that warranted further evaluation of its involvement in paraptosis. We found that both siRNA-mediated knockdown of USP10 and treatment with the USP10 inhibitor, spautin-1, effectively attenuated curcumin-induced paraptosis. This systematic assay, in which a siRNA library is screened for the ability to ameliorate paraptotic changes in mitochondria, may enable researchers to identify potent regulators of paraptosis and new candidate genes/drugs to combat malignant breast cancer.


Assuntos
Antineoplásicos/farmacologia , Morte Celular/genética , Curcumina/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Ubiquitina Tiolesterase/genética , Benzilaminas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Feminino , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Quinazolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo
20.
Mycobiology ; 46(3): 287-295, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294490

RESUMO

In this study, we evaluated the effect of different temperatures (10, 20, 30, and 40 °C) and relative humidities (RHs; 12, 44, 76, and 98%) on populations of predominant grain fungi (Aspergillus candidus, Aspergillus flavus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum) and the biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic A. flavus KCCM 60330 in stored rice. Populations of all the tested fungi in inoculated rice grains were significantly enhanced by both increased temperature and RH. Multiple linear regression analysis revealed that one unit increase of temperature resulted in greater effects than that of RH on fungal populations. When rice grains were treated with P. protegens AS15 prior to inoculation with A. flavus KCCM 60330, fungal populations and aflatoxin production in the inoculated grains were significantly reduced compared with the grains untreated with strain AS15 regardless of temperature and RH (except 12% RH for fungal population). In addition, bacterial populations in grains were significantly enhanced with increasing temperature and RH, regardless of bacterial treatment. Higher bacterial populations were detected in biocontrol strain-treated grains than in untreated control grains. To our knowledge, this is the first report showing consistent biocontrol activity of P. protegens against A. flavus population and aflatoxin production in stored rice grains under various environmental conditions of temperature and RH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA