Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 25(17): 20087-20097, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041693

RESUMO

In nuclear medicine, obtaining information on the exact location, size, and dose of radiopharmaceuticals distributed on lesions is critically important. Therefore, we have fabricated a novel fiber-optic gamma endoscope (FOGE) to measure the shape and size of the radioisotope as well as the gamma-ray distribution simultaneously. To evaluate the performance of the novel FOGE, we obtained optical images and gamma images by using a USAF 1951 target and radioisotope sources, respectively. The experimental results demonstrated that the FOGE could be utilized to obtain both the location and the distribution of the radioactive isotope that emitted gamma-rays. Based on the results of this study, use of a flexible and thin FOGE would be valuable in nuclear medicine and nuclear safety technologies given the advantages of accurate dose-monitoring. Especially, improvements could be achieved in surgery technologies because the FOGE could be used in minimally invasive radioguided surgery owing to its thin form and flexibility.

2.
Sensors (Basel) ; 15(11): 28490-501, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26569252

RESUMO

We developed a multichannel all-in-one phantom dosimeter system composed of nine sensing probes, a chest phantom, an image intensifier, and a complementary metal-oxide semiconductor (CMOS) image sensor to measure the dose distribution of an X-ray beam used in radiation diagnosis. Nine sensing probes of the phantom dosimeter were fabricated identically by connecting a plastic scintillating fiber (PSF) to a plastic optical fiber (POF). To measure the planar dose distribution on a chest phantom according to exposure parameters used in clinical practice, we divided the top of the chest phantom into nine equal parts virtually and then installed the nine sensing probes at each center of the nine equal parts on the top of the chest phantom as measuring points. Each scintillation signal generated in the nine sensing probes was transmitted through the POFs and then intensified by the image intensifier because the scintillation signal normally has a very low light intensity. Real-time scintillation images (RSIs) containing the intensified scintillation signals were taken by the CMOS image sensor with a single lens optical system and displayed through a software program. Under variation of the exposure parameters, we measured RSIs containing dose information using the multichannel all-in-one phantom dosimeter and compared the results with the absorbed doses obtained by using a semiconductor dosimeter (SCD). From the experimental results of this study, the light intensities of nine regions of interest (ROI) in the RSI measured by the phantom dosimeter were similar to the dose distribution obtained using the SCD. In conclusion, we demonstrated that the planar dose distribution including the entrance surface dose (ESD) can be easily measured by using the proposed phantom dosimeter system.


Assuntos
Modelos Biológicos , Imagens de Fantasmas , Radiografia Torácica/instrumentação , Radiometria/instrumentação , Humanos , Radiografia Torácica/métodos , Radiometria/métodos
3.
EJNMMI Phys ; 11(1): 49, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874674

RESUMO

BACKGROUND: Head motion during brain positron emission tomography (PET)/computed tomography (CT) imaging degrades image quality, resulting in reduced reading accuracy. We evaluated the performance of a head motion correction algorithm using 18F-flutemetamol (FMM) brain PET/CT images. METHODS: FMM brain PET/CT images were retrospectively included, and PET images were reconstructed using a motion correction algorithm: (1) motion estimation through 3D time-domain signal analysis, signal smoothing, and calculation of motion-free intervals using a Merging Adjacent Clustering method; (2) estimation of 3D motion transformations using the Summing Tree Structural algorithm; and (3) calculation of the final motion-corrected images using the 3D motion transformations during the iterative reconstruction process. All conventional and motion-corrected PET images were visually reviewed by two readers. Image quality was evaluated using a 3-point scale, and the presence of amyloid deposition was interpreted as negative, positive, or equivocal. For quantitative analysis, we calculated the uptake ratio (UR) of 5 specific brain regions, with the cerebellar cortex as a reference region. The results of the conventional and motion-corrected PET images were statistically compared. RESULTS: In total, 108 sets of FMM brain PET images from 108 patients (34 men and 74 women; median age, 78 years) were included. After motion correction, image quality significantly improved (p < 0.001), and there were no images of poor quality. In the visual analysis of amyloid deposition, higher interobserver agreements were observed in motion-corrected PET images for all specific regions. In the quantitative analysis, the UR difference between the conventional and motion-corrected PET images was significantly higher in the group with head motion than in the group without head motion (p = 0.016). CONCLUSIONS: The motion correction algorithm provided better image quality and higher interobserver agreement. Therefore, we suggest that this algorithm be adopted as a routine post-processing protocol in amyloid brain PET/CT imaging and applied to brain PET scans with other radiotracers.

4.
ACS Appl Mater Interfaces ; 12(7): 8073-8081, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31990166

RESUMO

Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8-13 µm and preserve low solar absorption for enhancing radiative cooling performance. The proposed daytime radiative cooler has a simple multilayer structure of inorganic materials, namely, Al2O3, Si3N4, and SiO2, and exhibits high emission in the 8-13 µm region. Through a particle swarm optimization method, which is based on an evolutionary algorithm, the stacking sequence and thickness of each layer were optimized to maximize emissions in the 8-13 µm region and minimize the cooling temperature. The average value of emissivity of the fabricated inorganic radiative cooler in the 8-13 µm range was 87%, and its average absorptivity in the solar spectral region (0.3-2.5 µm) was 5.2%. The fabricated inorganic radiative cooler was experimentally applied for daytime radiative cooling. The inorganic radiative cooler can reduce the temperature by up to 8.2 °C compared to the inner ambient temperature during the daytime under direct sunlight.

5.
ACS Appl Mater Interfaces ; 12(4): 5058-5064, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31809014

RESUMO

Anisotropic small structures found throughout living nature have unique functionalities as seen by Gecko lizards. Here, we present a simple yet programmable method for fabricating anisotropic, submicrometer-sized bent pillar structures using photoreconfiguration of an azopolymer. A slant irradiation of a p-polarized light on the pillar structure of an azopolymer simply results in a bent pillar structure. By combining the field-gradient effect and directionality of photofluidization, control of the bending shape and the curvature is achieved. With the bent pillar patterned surface, anisotropic wetting and directional adhesion are demonstrated. Moreover, the bent pillar structures can be transferred to other polymers, highlighting the practical importance of this method. We believe that this pragmatic method to fabricate bent pillars can be used in a reliable manner for many applications requiring the systematic variation of a bent pillar structure.

6.
Sci Rep ; 9(1): 15028, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636300

RESUMO

In using nanostructures to design solar thermal absorbers, computational methods, such as rigorous coupled-wave analysis and the finite-difference time-domain method, are often employed to simulate light-structure interactions in the solar spectrum. However, those methods require heavy computational resources and CPU time. In this study, using a state-of-the-art modeling technique, i.e., deep learning, we demonstrate significant reduction of computational costs during the optimization processes. To minimize the number of samples obtained by actual simulation, only regulated amounts are prepared and used as a data set to train the deep neural network (DNN) model. Convergence of the constructed DNN model is carefully examined. Moreover, several analyses utilizing an evolutionary algorithm, which require a remarkable number of performance calculations, are performed using the trained DNN model. We show that deep learning effectively reduces the actual simulation counts compared to the case of a design process without a neural network model. Finally, the proposed solar thermal absorber is fabricated and its absorption performance is characterized.

7.
Medicine (Baltimore) ; 98(46): e17959, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31725656

RESUMO

Observational phantom study.This study aimed to evaluate the radiation exposure dose of practitioner's hands when performing C-arm guided procedures and to determine the usefulness of our newly designed radiation shielding device.C-arm guided procedures including lumbar transforaminal epidural steroid injections (TFESIs) are commonly used for pain control induced by lumbar radiculopathy. The practitioner's hands are vulnerable to radiation exposure because of the long exposure time and short distance from the radiation resource. No studies to date have reported the cumulative exposure of the physician's hands according to location and exposure time.Using a chest phantom irradiated with X-rays under lumbar TFESI conditions, cumulative scatter radiation dose was measured at 36 points using a dosimeter. The measurements were checked at 1, 3, 5, 10 minutes of radiation exposure. The experiment was repeated using our newly designed shielding device.Significant radiation accumulation was observed in the field where the practitioner's hands might be placed during C-arm guided procedures. The further the distance from the radiation resource and the shorter the exposure time, the smaller was the cumulative radiation expose dose. The new shielding device showed an excellent shielding rate (66.0%-99.9%) when the dosimeter was within the shielding range. However, at some points, increased accumulated radiation exposure dose was observed, although the dosimeter was within the range of the shielding device.To reduce radiation exposure of the practitioner's hands when performing C-arm-guided procedures, the radiation exposure time should be decreased and a greater distance from the radiation resource should be maintained. When using our shielding device, placing the hand close to the device surface and minimizing the time using fluoroscopy minimized the radiation exposure of the hand.


Assuntos
Fluoroscopia/métodos , Mãos/efeitos da radiação , Exposição Ocupacional/análise , Exposição à Radiação/análise , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Doses de Radiação , Proteção Radiológica , Processo Xifoide/diagnóstico por imagem
8.
Sci Rep ; 8(1): 13896, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224764

RESUMO

With the advent of new nanomanufacturing techniques has come the rise of the field of nanophotonics and an increased need to determine optical properties of novel structures. Commercial software packages are able to estimate the behavior, but require large resources and heavy computational time. By combining coordinate transforms and Effective Medium Theory (EMT), an effective relative permittivity tensor is defined and further exploited to calculate the polarization-coupled Fresnel coefficients through Maxwell's equations. A uniaxial simplification is made to show the case of tilted nanorod arrays. To demonstrate the flexibility of this system, the interfacial reflectance has been calculated for both s- and p-polarizations as well as the coupled case with the volume filling fractions of f = 0.10 and 0.30 for silver (Ag) and titanium (Ti) nanorods, and a scenario of a Ag nanorod array with polymethyl methacrylate (PMMA) as the surrounding medium. The exact results computed by the finite-difference time-domain method justify the validity of EMT with polarization coupling taken into account. The effects of incidence angle and azimuthal angle on reflectance are also discussed. The relatively simple nature of this approach allows for fast estimations of the optical properties of various nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA