Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Mol Carcinog ; 61(9): 827-838, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35723497

RESUMO

Primary tumors evolve metabolic mechanisms favoring glycolysis for adenosine triphosphate (ATP) generation and antioxidant defenses. In contrast, metastatic cells frequently depend on mitochondrial respiration and oxidative phosphorylation (OxPhos). This reliance of metastatic cells on OxPhos can be exploited using drugs that target mitochondrial metabolism. Therefore, therapeutic agents that act via diverse mechanisms, including the activation of signaling pathways that promote the production of reactive oxygen species (ROS) and/or a reduction in antioxidant defenses may elevate oxidative stress and inhibit tumor cell survival. In this review, we will provide (1) a mechanistic analysis of function-selective extracellular signal-regulated kinase-1/2 (ERK1/2) inhibitors that inhibit cancer cells through enhanced ROS, (2) a review of the role of mitochondrial ATP synthase in redox regulation and drug resistance, (3) a rationale for inhibiting ERK signaling and mitochondrial OxPhos toward the therapeutic goal of reducing tumor metastasis and treatment resistance. Recent reports from our laboratories using metastatic melanoma and breast cancer models have shown the preclinical efficacy of novel and rationally designed therapeutic agents that target ERK1/2 signaling and mitochondrial ATP synthase, which modulate ROS events that may prevent or treat metastatic cancer. These findings and those of others suggest that targeting a tumor's metabolic requirements and vulnerabilities may inhibit metastatic pathways and tumor growth. Approaches that exploit the ability of therapeutic agents to alter oxidative balance in tumor cells may be selective for cancer cells and may ultimately have an impact on clinical efficacy and safety. Elucidating the translational potential of metabolic targeting could lead to the discovery of new approaches for treatment of metastatic cancer.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Neoplasias , Trifosfato de Adenosina/metabolismo , Antioxidantes , Humanos , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neoplasias/metabolismo , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
2.
Pulm Pharmacol Ther ; 36: 37-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26778828

RESUMO

OBJECTIVES: We investigated the effect of long-term treatment with azithromycin on the pathogenesis of chronic asthma with airway remodeling. METHODS: Six-week-old-BALB/c mice were sensitized with ovalbumin (OVA) combined with lipopolysaccharide (LPS) for 1 month, then challenged with OVA for 3 months. Azithromycin at 75 mg/kg was administered via oral gavage five times a week during the challenge period. Inflammatory cells, T helper 2 cytokines in bronchoalveolar lavage fluid (BAL) fluid, and airway hyperresponsiveness (AHR) were measured. Parameters related to airway remodeling were evaluated. The levels of neutrophil elastase, Interleukin (IL)-8, and BRP-39 (human homologue YKL-40) were assessed. The expression of MAPK and NF-κB signaling were investigated. RESULTS: Long-term treatment with azithromycin improved AHR and airway inflammation compared with the OVA and the OVA/LPS groups. The concentrations of IL-5 and IL-13 in the OVA/LPS group decreased significantly after azithromycin administration. The levels of neutrophil elastase and IL-8, as surrogate markers of neutrophil activation, were reduced in the azithromycin group compared with the OVA/LPS group. Goblet cell hyperplasia and the smooth muscle thickening of airway remodeling were attenuated after azithromycin treatment. The expression of MAPK/NF-kappaB signal and the level of BRP-39 in the lung decreased remarkably in the OVA/LPS with azithromycin-treated group. CONCLUSIONS: This study suggests that in a murine model of chronic asthma, long-term azithromycin treatment ameliorates not only airway inflammation but also airway remodeling by influencing on neutrophilc-related mediators, BRP-39 and MAPK/NF-κB signal pathways. Macrolide therapy might be an effective adjuvant therapy in a chronic, severe asthma with remodeling airway.


Assuntos
Antibacterianos/uso terapêutico , Asma/tratamento farmacológico , Asma/patologia , Azitromicina/uso terapêutico , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Animais , Asma/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Interleucinas/metabolismo , Elastase de Leucócito/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ovalbumina , Pneumonia/induzido quimicamente , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos
3.
J Cell Biochem ; 116(10): 2210-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25808624

RESUMO

Activation of genes promoting aerobic glycolysis and suppression of mitochondrial oxidative phosphorylation is one of the hallmarks of cancer. The RUNX2 transcription factor mediates breast cancer (BC) metastasis to bone and is regulated by glucose availability. But, the mechanisms by which it regulates glucose metabolism and promotes an oncogenic phenotype are not known. RUNX2 expression in luminal BC cells correlated with lower estrogen receptor-α (ERα) levels, anchorage-independent growth, expression of glycolytic genes, increased glucose uptake, and sensitivity to glucose starvation, but not to inhibitors of oxidative phosphorylation. Conversely, RUNX2 knockdown in triple-negative BC cells inhibited mammosphere formation and glucose dependence. RUNX2 knockdown resulted in lower LDHA, HK2, and GLUT1 glycolytic gene expression, but upregulation of pyruvate dehydrogenase-A1 (PDHA1) mRNA and enzymatic activity, which was consistent with lower glycolytic potential. The NAD-dependent histone deacetylase, SIRT6, a known tumor suppressor, was a critical regulator of these RUNX2-mediated metabolic changes. RUNX2 expression resulted in elevated pAkt, HK2, and PDHK1 glycolytic protein levels that were reduced by ectopic expression of SIRT6. RUNX2 also repressed mitochondrial oxygen consumption rates (OCR), a measure of oxidative phosphorylation (respiration). Overexpression of SIRT6 increased respiration in RUNX2-positive cells, but knockdown of SIRT6 in cells expressing low RUNX2 decreased respiration. RUNX2 repressed SIRT6 expression at both the transcriptional and post-translational levels and endogenous SIRT6 expression was lower in malignant BC tissues or cell lines that expressed high levels of RUNX2. These results support a hypothesis whereby RUNX2-mediated repression of the SIRT6 tumor suppressor regulates metabolic pathways that promote BC progression.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Glucose/metabolismo , Sirtuínas/biossíntese , Neoplasias de Mama Triplo Negativas/genética , Proliferação de Células/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise/genética , Humanos , Células MCF-7 , Proteínas de Neoplasias/biossíntese , Fosforilação Oxidativa , Sirtuínas/genética , Neoplasias de Mama Triplo Negativas/patologia
4.
Int J Cancer ; 128(10): 2261-73, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20658532

RESUMO

Esophageal squamous cell carcinoma (ESCC) is the sixth most frequent cause of cancer death in the world, and cigarette smoke is a key factor in esophageal carcinogenesis. To identify molecular changes during cigarette smoke-induced ESCC, we examined the methylation status of 13 gene promoters in the human immortalized, nontumorigenic esophageal epithelial cell line (Het-1A) that were exposed to mainstream (MSE) or sidestream cigarette smoke extract (SSE) for 6 months in culture. The promoter of sequence-specific single-stranded DNA-binding protein 2 (SSBP2) was methylated in the Het-1A cells exposed to MSE (MSE-Het-1A). Promoter methylation (86%, 56/70) and downregulation of SSBP2 expression were frequently detected in tumor tissues from ESCC patients. In addition, reintroduction of SSBP2 in an ESCC cell line (TE1) that does not express SSBP2 and in the MSE-Het-1A cells inhibited expression of LRP6 and Dvl3, which are mediators of the Wnt signaling pathway. SSBP2 expression markedly decreased the colony-forming ability of ESCC cell lines and significantly inhibited cell growth of the MSE-Het-1A cells. Our results indicate that cigarette smoking is a cause of SSBP2 promoter methylation and that SSBP2 harbors a tumor suppressive role in ESCC through inhibition of the Wnt signaling pathway.


Assuntos
Carcinoma de Células Escamosas/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Neoplasias Esofágicas/genética , Nicotiana , Regiões Promotoras Genéticas , Fumaça , Linhagem Celular Transformada , Humanos , Imuno-Histoquímica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Cancer Metastasis Rev ; 29(1): 181-206, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20135198

RESUMO

Colorectal cancer (CRC) arises as a consequence of the accumulation of genetic and epigenetic alterations in colonic epithelial cells during neoplastic transformation. Epigenetic modifications, particularly DNA methylation in selected gene promoters, are recognized as common molecular alterations in human tumors. Substantial efforts have been made to determine the cause and role of aberrant DNA methylation ("epigenomic instability") in colon carcinogenesis. In the colon, aberrant DNA methylation arises in tumor-adjacent, normal-appearing mucosa. Aberrant methylation also contributes to later stages of colon carcinogenesis through simultaneous methylation in key specific genes that alter specific oncogenic pathways. Hypermethylation of several gene clusters has been termed CpG island methylator phenotype and appears to define a subgroup of colon cancer distinctly characterized by pathological, clinical, and molecular features. DNA methylation of multiple promoters may serve as a biomarker for early detection in stool and blood DNA and as a tool for monitoring patients with CRC. DNA methylation patterns may also be predictors of metastatic or aggressive CRC. Therefore, the aim of this review is to understand DNA methylation as a driving force in colorectal neoplasia and its emerging value as a molecular marker in the clinic.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma/genética , Neoplasias Colorretais/genética , Metilação de DNA , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma/metabolismo , Neoplasias Colorretais/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/fisiologia , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas/genética
6.
Int J Cancer ; 127(2): 269-81, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19937795

RESUMO

Cigarette-smoking increases the risk of developing various types of human cancers including esophageal cancers. To test the effects of chronic cigarette smoke exposure directly on esophageal epithelium, cellular resistance to mainstream extract (MSE), or sidestream smoke extract (SSE) was developed in chronically exposed nonmalignant Het-1A cells. Anchorage-independent growth, in vitro invasion capacity and proliferation of the resistant cells increased compared with the unexposed, sensitive cells. An epithelial marker E-cadherin was down-regulated and mesenchymal markers N-cadherin and vimentin were up-regulated in the resistant cells. Het-1A cells resistant to MSE or SSE consumed more glucose, and produced more lactate than the sensitive cells. The increased anchorage-independent cell growth of the resistant cells was suppressed by a glycolysis inhibitor, 2-deoxy-D-glucose, indicating that these cells are highly dependent on the glycolytic pathway for survival. Decreased mitochondrial membrane potential and ATP production in the resistant cells indicate the presence of mitochondrial dysfunction induced by chronic exposure of cigarette smoke extract. Increased expression of nuclear genes in the glycolytic pathway and decreased levels of mitochondrial genes in the resistant cells support the notion that cigarette smoking significantly contributes to the transformation of nonmalignant esophageal epithelial cells into a tumorigenic phenotype.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Fumar/efeitos adversos , Trifosfato de Adenosina/metabolismo , Western Blotting , Caderinas/metabolismo , Proliferação de Células , Células Cultivadas , Desoxiglucose/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Citometria de Fluxo , Humanos , Neoplasias de Células Escamosas/metabolismo , Neoplasias de Células Escamosas/patologia , Consumo de Oxigênio , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Clin Cancer Res ; 15(4): 1184-91, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19228724

RESUMO

PURPOSE: Aberrant promoter hypermethylation of several known or putative tumor suppressor genes occurs frequently during the pathogenesis of various cancers including breast cancer. Many epigenetically inactivated genes involved in breast cancer development remain to be identified. Therefore, in this study we used a pharmacologic unmasking approach in breast cancer cell lines with 5-aza-2'-deoxycytidine (5-aza-dC) followed by microarray expression analysis to identify epigenetically inactivated genes in breast cancer. EXPERIMENTAL DESIGN: Breast cancer cell lines were treated with 5-aza-dC followed by microarray analysis to identify epigenetically inactivated genes in breast cancer. We then used bisulfite DNA sequencing, conventional methylation-specific PCR, and quantitative fluorogenic real-time methylation-specific PCR to confirm cancer-specific methylation in novel genes. RESULTS: Forty-nine genes were up-regulated in breast cancer cells lines after 5-aza-dC treatment, as determined by microarray analysis. Five genes (MAL, FKBP4, VGF, OGDHL, and KIF1A) showed cancer-specific methylation in breast tissues. Methylation of at least two was found at high frequency only in breast cancers (40 of 40) as compared with normal breast tissue (0 of 10; P<0.0001, Fisher's exact test). CONCLUSIONS: This study identified new cancer-specific methylated genes to help elucidate the biology of breast cancer and as candidate diagnostic markers for the disease.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Epigênese Genética , Inativação Gênica , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Cinesinas/genética , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteínas da Mielina/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Fatores de Crescimento Neural/genética , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Proteolipídeos/genética , Proteínas de Ligação a Tacrolimo/genética
8.
Oncotarget ; 11(43): 3863-3885, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33196708

RESUMO

Inhibitors of mitochondrial respiration and ATP synthesis may promote the selective killing of respiration-competent cancer cells that are critical for tumor progression. We previously reported that CADD522, a small molecule inhibitor of the RUNX2 transcription factor, has potential for breast cancer treatment. In the current study, we show that CADD522 inhibits mitochondrial oxidative phosphorylation by decreasing the mitochondrial oxygen consumption rate (OCR) and ATP production in human breast cancer cells in a RUNX2-independent manner. The enzyme activity of mitochondrial ATP synthase was inhibited by CADD522 treatment. Importantly, results from cellular thermal shift assays that detect drug-induced protein stabilization revealed that CADD522 interacts with both α and ß subunits of the F1-ATP synthase complex. Differential scanning fluorimetry also demonstrated interaction of α subunits of the F1-ATP synthase to CADD522. These results suggest that CADD522 might target the enzymatic F1 subunits in the ATP synthase complex. CADD522 increased the levels of intracellular reactive oxygen species (ROS), which was prevented by MitoQ, a mitochondria-targeted antioxidant, suggesting that cancer cells exposed to CADD522 may elevate ROS from mitochondria. CADD522-increased mitochondrial ROS levels were enhanced by exogenously added pro-oxidants such as hydrogen peroxide or tert-butyl hydroperoxide. Conversely, CADD522-mediated cell growth inhibition was blocked by N-acetyl-l-cysteine, a general ROS scavenger. Therefore, CADD522 may exert its antitumor activity by increasing mitochondrial driven cellular ROS levels. Collectively, our data suggest in vitro proof-of-concept that supports inhibition of mitochondrial ATP synthase and ROS generation as contributors to the effectiveness of CADD522 in suppression of tumor growth.

9.
Mol Cancer Res ; 6(1): 31-41, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18234960

RESUMO

Promoter DNA hypermethylation with gene silencing is a common feature of human cancer, and cancer-prone methylation is believed to be a landmark of tumor suppressor genes (TSG). Identification of novel methylated genes would not only aid in the development of tumor markers but also elucidate the biological behavior of human cancers. We identified several epigenetically silenced candidate TSGs by pharmacologic unmasking of esophageal squamous cell carcinoma (ESCC) cell lines by demethylating agents (5-aza-2'-deoxycitidine and trichostatin A) combined with ESCC expression profiles using expression microarray. HOP/OB1/NECC1 was identified as an epigenetically silenced candidate TSG and further examined for (a) expression status, (b) methylation status, and (c) functional involvement in cancer cell lines. (a) The HOP gene encodes two putative promoters (promoters A and B) associated with two open reading frames (HOPalpha and HOPbeta, respectively), and HOPalpha and HOPbeta were both down-regulated in ESCC independently. (b) Promoter B harbors dense CpG islands, in which we found dense methylation in a cancer-prone manner (55% in tumor tissues by TaqMan methylation-specific PCR), whereas promoter A does not harbor CpG islands. HOPbeta silencing was associated with DNA methylation of promoter B in nine ESCC cell lines tested, and reactivated by optimal conditions of demethylating agents, whereas HOPalpha silencing was not reactivated by such treatments. Forced expression of HOP suppressed tumorigenesis in soft agar in four different squamous cell carcinoma cell lines. More convincingly, RNA interference knockdown of HOP in TE2 cells showed drastic restoration of the oncogenic phenotype. In conclusion, HOP is a putative TSG that harbors tumor inhibitory activity, and we for the first time showed that the final shutdown process of HOP expression is linked to promoter DNA hypermethylation under the double control of the discrete promoter regions in cancer.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Metilação de DNA , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Proteínas de Homeodomínio/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Sequência de Bases , Linhagem Celular Tumoral , Ilhas de CpG/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Proteínas de Homeodomínio/metabolismo , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Ensaio Tumoral de Célula-Tronco , Proteínas Supressoras de Tumor/metabolismo
10.
Am J Pathol ; 173(2): 518-25, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18583321

RESUMO

While overexpression of several aquaporins (AQPs) has been reported in different types of human cancer, the role of AQPs in carcinogenesis has not been clearly defined. Here, by immunochemistry, we have found expression of AQP5 protein in 62.8% (59/94) of resected colon cancer tissue samples as well as association of AQP5 with liver metastasis. We then demonstrated that overexpression of human AQP5 (hAQP5) induces cell proliferation in colon cancer cells. Overexpression of wild-type hAQP5 increased proliferation and phosphorylation of extracellular signal-regulated kinase-1/2 in HCT116 colon cancer cells whereas these phenomena in hAQP5 mutants (N185D and S156A) were diminished, indicating that both membrane association and serine/threonine phosphorylation of AQP5 are required for proper function. Interestingly, overexpression of AQP1 and AQP3 showed no differences in extracellular signal-regulated kinase-1/2 phosphorylation, suggesting that AQP5, unlike AQP1, may be involved in signal transduction. Moreover, hAQP5-overexpressing cells showed an increase in retinoblastoma protein phosphorylation through the formation of a nuclear complex with cyclin D1 and CDK4. Small interfering RNA analysis confirmed that hAQP5 activates the Ras signaling pathway. These data not only describe the induction of hAQP5 expression during colorectal carcinogenesis but also provide a molecular mechanism for colon cancer development through the interaction of hAQP5 with the Ras/extracellular signal-regulated kinase/retinoblastoma protein signaling pathway, identifying hAQP5 as a novel therapeutic target.


Assuntos
Aquaporina 5/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/metabolismo , Animais , Aquaporina 5/genética , Proliferação de Células , Células Cultivadas , Neoplasias do Colo/patologia , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Mutação , Fosforilação , Transdução de Sinais
11.
Clin Cancer Res ; 14(12): 3754-60, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18559593

RESUMO

PURPOSE: Prostate cancer is a major cause of cancer death among men and the development of new biomarkers is important to augment current detection approaches. EXPERIMENTAL DESIGN: We identified hypermethylation of the ssDNA-binding protein 2 (SSBP2) promoter as a potential DNA marker for human prostate cancer based on previous bioinformatics results and pharmacologic unmasking microarray. We then did quantitative methylation-specific PCR in primary prostate cancer tissues to confirm hypermethylation of the SSBP2 promoter, and analyzed its correlation with clinicopathologic data. We further examined SSBP2 expression in primary prostate cancer and studied its role in cell growth. RESULTS: Quantitative methylation-specific PCR results showed that the SSBP2 promoter was hypermethylated in 54 of 88 (61.4%) primary prostate cancers versus 0 of 23 (0%) in benign prostatic hyperplasia using a cutoff value of 120. Furthermore, we found that expression of SSBP2 was down-regulated in primary prostate cancers and cancer cell lines. Hypermethylation of the SSBP2 promoter and its expression were closely associated with higher stages of prostate cancer. Reactivation of SSBP2 expression by the demethylating agent 5-aza-2'-deoxycytidine in prostate cancer cell lines confirmed epigenetic inactivation as one major mechanism of SSBP2 regulation. Moreover, forced expression of SSBP2 inhibited prostate cancer cell proliferation in the colony formation assay and caused cell cycle arrest. CONCLUSION: SSBP2 inhibits prostate cancer cell proliferation and seems to represent a novel prostate cancer-specific DNA marker, especially in high stages of human prostate cancer.


Assuntos
Adenocarcinoma/genética , Proliferação de Células , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Neoplasias da Próstata/genética , Adenocarcinoma/patologia , Idoso , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Sequência de Bases , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/fisiologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Análise Mutacional de DNA , Decitabina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Estadiamento de Neoplasias , Hiperplasia Prostática/genética , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas
12.
Cancer Res ; 67(9): 4123-9, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17456585

RESUMO

Promoter hypermethylation is one of the common mechanisms leading to gene silencing in various human cancers. Using a combination of pharmacologic unmasking and microarray techniques, we identified 59 candidate hypermethylated genes, including LOXL1, a lysyl oxidase-like gene, in human bladder cancer cells. We further showed that LOXL1 and LOXL4 are commonly silenced genes in human bladder cancer cells, and this silence is predominantly related to promoter methylation. We also found LOXL1 and LOXL4 gene methylation and loss of expression in primary bladder tumors. In addition, somatic mutations were identified in LOXL4, but not in LOXL1 in bladder cancer. Moreover, reintroduction of LOXL1 and LOXL4 genes into human bladder cancer cells leads to a decrease of colony formation ability. Further studies indicated that the overexpression of LOXL1 and LOXL4 could antagonize Ras in activating the extracellular signal-regulated kinase (ERK) signaling pathway. Thus, our current study suggests for the first time that lysyl oxidase-like genes can act as tumor suppressor genes and exert their functions through the inhibition of the Ras/ERK signaling pathway in human bladder cancer.


Assuntos
Aminoácido Oxirredutases/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Neoplasias da Bexiga Urinária/genética , Proteínas ras/antagonistas & inibidores , Aminoácido Oxirredutases/metabolismo , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Citoplasma/enzimologia , Metilação de DNA/efeitos dos fármacos , Decitabina , Epigênese Genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Mutação , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Proteína-Lisina 6-Oxidase , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Proteínas ras/metabolismo
13.
Int J Cancer ; 123(4): 753-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18512240

RESUMO

PGP9.5 is a controversial molecule from an oncologic point of view. We recently identified frequent methylation of PGP9.5 gene exclusively in primary head and neck squamous cell carcinoma (HNSCC), suggesting that it could be a tumor suppressor gene. On the other hand, PGP9.5 was reported to be overexpressed in a subset of human cancers presumably due to intrinsic oncogenic properties or as a result of transformation. To demonstrate that PGP9.5 possesses tumor suppressive activity, we examined forced expression by stable transfection of PGP9.5 in 4 HNSCC cell lines. Although all 4 cell lines demonstrated reduced log growth rates in culture after transfection, only 2 cell lines with wild type p53 (011, 022) demonstrated decreased growth in soft agar. In 2 cell lines with mutant p53 (013, 019), we observed no altered growth in soft agar and increased sensitivity to UV irradiation. We then tested for and found a high frequency of promoter methylation in a larger panel of primary tumors including HNSCC, esophageal SCC, gastric, lung, prostate and hepatocellular carcinoma. Our data support the notion that PGP9.5 is a tumor suppressor gene that is inactivated by promoter methylation or gene deletion in several types of human cancers.


Assuntos
Genes Supressores de Tumor , Neoplasias/genética , Ubiquitina Tiolesterase/genética , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Metilação de DNA , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias/enzimologia , Transfecção , Ubiquitina Tiolesterase/biossíntese
14.
Int J Cancer ; 122(11): 2498-502, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18302152

RESUMO

Deleted in Colorectal Cancer (DCC) is a putative tumor suppressor gene, whose loss has been implicated in colorectal tumorigenesis. Decreased or loss of DCC expression has been demonstrated in a number of human cancers, including esophageal cancer. In this study, we analyzed esophageal squamous cell carcinoma (ESCC) cell lines and primary ESCCs as well as normal esophageal tissues for DCC methylation by bisulfite sequencing, methylation-specific PCR (MSP) and/or quantitative methylation-specific PCR (qMSP). When a qMSP cut-off value for positivity was set to 1.0, DCC methylation was detected in 10 of 12 ESCC cell lines tested, 74% of primary ESCCs (n = 70), 0% of corresponding normal esophageal tissues (n = 20) and 0% of normal esophagus from healthy individuals (n = 19). DCC expression was undetectable in the majority of ESCC cell lines, and treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine reactivated gene expression. DCC overexpression suppressed colony formation in ESCC cell lines, suggesting that DCC may function as a tumor suppressor gene in the esophagus. However, DCC methylation was not associated with any clinical or pathologic parameters measured. We have demonstrated that DCC methylation is a frequent and cancer-specific event in primary ESCCs, suggesting that DCC and associated pathways may represent a new diagnostical therapeutic target.


Assuntos
Carcinoma de Células Escamosas/genética , Metilação de DNA , Neoplasias Esofágicas/genética , Genes DCC , Genes Supressores de Tumor , Regiões Promotoras Genéticas , Idoso , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Diagnóstico Precoce , Neoplasias Esofágicas/patologia , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Biochem Biophys Res Commun ; 367(2): 291-8, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18155156

RESUMO

Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells.


Assuntos
Aquaporina 5/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Animais , Camundongos , Regulação para Cima/fisiologia
16.
Biochem Biophys Res Commun ; 370(1): 38-43, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18346456

RESUMO

The pathogenesis of breast cancer involves multiple genetic and epigenetic events. In this study, we report an epigenetic alteration of DFNA5 in human breast cancer. DFNA5 gene was silenced in breast cancer cell lines that were methylated in the DFNA5 promoter, and restored by treatment with the demethylating agent, 5-aza-dC, and gene knock-down of DFNA5 increased cellular invasiveness in vitro. The mRNA expression of DFNA5 in breast cancer tissues was down-regulated as compared to normal tissues. Moreover, the DFNA5 promoter was found to be methylated in primary tumor tissues with high frequency (53%, 18/34). Quantitative methylation-specific PCR of DFNA5 clearly discriminated primary breast cancer tissues from normal breast tissues (15.3%, 2/13). Moreover, methylation status of DFNA5 was correlated with lymph node metastasis in breast cancer patients. Our data implicate DFNA5 promoter methylation as a novel molecular biomarker in human breast cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Metilação de DNA , Epistasia Genética , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/genética , Adulto , Idoso , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Mensageiro , Receptores de Estrogênio/antagonistas & inibidores
17.
Biochem Biophys Res Commun ; 365(2): 221-6, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17980147

RESUMO

Early detection of lung cancer is challenging due to a lack of adequate biomarkers. To discover novel tumor suppressor genes (TSGs) silenced by aberrant promoter methylation, we analyzed the gene expression profiles of two lung adenocarcinoma cell lines using pharmacologic-unmasking and subsequent microarray-analysis. Among 617 genes upregulated, we selected 30 genes and investigated the methylation status of their promoters by bisulfite sequencing analysis. Aberrant methylation was detected in four genes (CRABP2, NOEY2, T, MAP2K3) in at least one lung adenocarcinoma cell lines. Furthermore, the T promoter was methylated in 60% of primary lung adenocarcinomas versus 13% of non-malignant lung tissues. Conversely, RT-PCR analysis revealed T expression was low in lung tumors, while high in normal tissues. In addition, no non-synonymous mutations related to gene silencing were found. While further analysis is warranted, our results suggest that T has the potential to be a novel candidate TSG in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Epigênese Genética/genética , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Marcação de Genes/métodos , Terapia Genética/métodos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Linhagem Celular Tumoral , Inativação Gênica , Humanos
18.
Biochem Biophys Res Commun ; 366(2): 321-7, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18042467

RESUMO

Phosphorylation pathway has been identified as an important step in membrane trafficking for AQP5. We generated stably transfected BEAS-2B human bronchial epithelial cells with various over-expression constructs on permeable support. In stable cells with wild-type AQP5 and S156A (AQP5 mutant targeting PKA consensus sequence), AQP5 expression was predominantly polarized to the apical membrane, whereas stable cells with N185D (AQP5 mutant targeting second NPA motif), mainly localized to the cytoplasm. Treatment with H89 and/or chlorophenylthio-cAMP (cpt-cAMP) did not affect membrane expression of AQP5 in any of three stable cells. In cells with wild-type AQP5 and N185D, AQP5s were phosphorylated by PKA, while phosphorylation of AQP5 was not detected in cells with S156A. These results indicate that, in AQP5, serine156 may be phosphorylated by PKA, but membrane expression of AQP5 may not be regulated by PKA phosphorylation. We conclude that AQP5 membrane targeting can include more than one mechanism besides cAMP dependent phosphorylation.


Assuntos
Aquaporina 5/metabolismo , Brônquios/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Transporte Proteico/fisiologia , Linhagem Celular , Humanos , Fosforilação
19.
Cancer Lett ; 264(1): 54-62, 2008 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-18423983

RESUMO

Overexpression of several aquaporins has been reported in different types of human cancer but the role of AQPs in human carcinogenesis has not yet been clearly defined. Here, we demonstrate that ectopic expression of human AQP5 (hAQP5), a water channel expressed in lung, salivary glands, and kidney, induces many phenotypic changes characteristic of transformation both in vitro and in vivo. Furthermore, the cell proliferative ability of AQP5 appears to be dependent upon the phosphorylation of a cAMP-protein kinase (PKA) consensus site located in a cytoplasmic loop of AQP5. In addition, phosphorylation of the PKA consensus site was found to be phosphorylated preferentially in tumors. These findings altogether indicate that hAQP5 plays an important role in human carcinogenesis and, furthermore, provide an attractive therapeutic target.


Assuntos
Aquaporina 5/metabolismo , Transformação Celular Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Aquaporina 5/efeitos dos fármacos , Aquaporina 5/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/genética , Fosforilação , Proteínas Proto-Oncogênicas/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Regulação para Cima/genética
20.
Mol Cell Biol ; 25(14): 6077-89, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15988020

RESUMO

p63 is a member of the p53 tumor suppressor gene family, which regulates downstream target gene expression by binding to sequence-specific response elements similar to those of p53. By using oligonucleotide expression microarray analysis and analyzing the promoters of p63-induced genes, we have identified novel p63-specific response elements (p63-REs) in the promoter regions of EVPL and SMARCD3. These p63-REs exhibit characteristic differences from the canonical p53-RE (RRRCWWGYYY) in both the core-binding element (CWWG) as well as the RRR and/or YYY stretches. Luciferase assays on mutagenized promoter constructs followed by electromobility shift analysis showed that p53 preferentially activates and binds to the RRRCATGYYY sequence, whereas p63 preferentially activates RRRCGTGYYY. Whereas EVPL protein is highly expressed in epithelial cells of the skin and pharynx in the p63+/+ mouse, it is undetectable in these tissues in the p63-/- mouse. Our results indicate that p63 can regulate expression of specific target genes such as those involved in skin, limb, and craniofacial development by preferentially activating distinct p63-specific response elements.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Fosfoproteínas/metabolismo , Precursores de Proteínas/genética , Elementos de Resposta/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Desenvolvimento Ósseo/genética , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Genes Reporter , Genes Supressores de Tumor , Humanos , Proteínas de Membrana/análise , Camundongos , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Faringe/crescimento & desenvolvimento , Faringe/imunologia , Fosfoproteínas/genética , Regiões Promotoras Genéticas/genética , Precursores de Proteínas/análise , Pele/crescimento & desenvolvimento , Pele/imunologia , Transativadores/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA