RESUMO
Plastics are an essential part of human life and their production is increasing every year. Plastics degrade into small particles (<5 mm, microplastics, MPs) in the environment due to various factors. MPs are widely distributed in the environment, and all living organisms are exposed to the effects of MPs. Extracellular vesicles (EVs) are small membrane particles surrounded by a lipid bilayer that are released into the environment by various cell types and are highly involved in inter- and intra-cellular communication through the exchange of proteins, nucleic acids, and lipids between cells. There have been numerous reports of adverse effects associated with the accumulation of MPs in human and animal cells, with recent studies showing that plastic treatment increases the number of EVs released from cells, but the mechanisms by which MPs accumulate and move between cells remain unclear. In this study, we investigated whether polystyrene (PS)-MPs are transferred cell-to-cell via EVs. This study showed that cell-derived EVs can transport plastic particles. Furthermore, we confirmed the accumulation of PS-MPs transported by EVs within cells using a real-time imaging device. This study provides an understanding of potential EVs-mediated effects of PS-MPs on organisms and suggests directions for further research.
Assuntos
Comunicação Celular , Vesículas Extracelulares , Microplásticos , Poliestirenos , Poliestirenos/metabolismo , Poliestirenos/química , Microplásticos/toxicidade , Microplásticos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Animais , Transporte Biológico , Linhagem CelularRESUMO
BACKGROUND Ketamine, a compelling candidate for neuropathic pain management, has attracted interest for its potential to elevate brain-derived neurotrophic factor (BDNF) levels. We aimed to assess the effects of intrathecally administered ketamine on the cerebrospinal fluid (CSF) levels of BDNF(c-BDNF) and allodynia in a rat model of traumatic brain injury (TBI). MATERIAL AND METHODS Forty-five rats were divided into 3 groups: sham operation (Group S), untreated TBI (Group T), and ketamine-treated TBI (Group K), with 15 rats in each group. Rats were anesthetized, and their skulls were secured in a stereotactic frame before undergoing craniotomy. A controlled cortical impact (CCI) was induced, followed by injection of ketamine (3.41 µg/g) into the CSF in Group K. In Group T, no drug was injected after CCI delivery. On postoperative days (POD) 1, 7, and 14, the 50% mechanical withdrawal threshold (50% MWT) and c-BDNF levels were assessed. RESULTS Groups T and K exhibited a significantly lower 50% MWT than Group S on POD 1(6.6 [5.7, 8.7] g, 10.0 [6.8, 11.6] g, and 18.7 [11.6, 18.7] g, respectively; P<0.001). The c-BDNF levels in Group K were significantly higher than those in Groups S and T on POD 1 (18.9 [16.1, 23.0] pg/ml, 7.3 [6.0, 8.8] pg/ml, and 11.0 [10.6, 12.3] pg/ml, respectively; P=0.006). CONCLUSIONS Intrathecal ketamine administration did not exhibit anti-allodynic effects following mild TBI. c-BDNF level is a promising potential indicator for predicting the expression of allodynia after mild TBI.
Assuntos
Concussão Encefálica , Ketamina , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Ketamina/farmacologia , Ketamina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos Sprague-DawleyRESUMO
A phosphide nickel(II) phenoxide pincer complex (2) reacts with CO(g) to give a pseudo-tetrahedral nickel(0) monocarbonyl complex (3) possessing a phosphinite moiety. This metal-ligand cooperative (MLC) transformation occurs with a (PPP)Ni scaffold (PPP- = P[2-PiPr2-C6H4]2-), which can accommodate both square planar and tetrahedral geometries. The 2-electron reduction of a nickel(II) species induced by CO coordination involves group transfer to generate a P-O bond. For better mechanistic understanding, a series of nickel(II) phenolate complexes (2a-2e, XC6H4O- (X = OMe, Me, H, and CF3) and pentafluorophenolate) were prepared. Kinetic experimental data reveal that a phenolate species with an electron-withdrawing group reacts faster than those with electron-donating groups. The reaction kinetic experiments were conducted in pseudo-first order conditions at room temperature monitored by UV-vis spectroscopy. A pentafluorophenolate nickel(II) complex (2e) reveals instantaneous reactions even at -40 °C to give a nickel(0) monocarbonyl species (3e) and the reverse reaction is also possible. According to kinetic experiments, the rate determining step (RDS) would be the formation of a 5-coordinate intermediate 4 with a negative entropy value (ΔS < 0), and a positive ρ value based on the Hammett plot indicates that the electron-deficient phenolate leads to a faster CO association. Furthermore, scramble experiments suggest that phenolate de-coordinates from the intermediate 4, which gives a (PPP)Ni-CO species 6. The cationic nickel monocarbonyl intermediate can possess a P--Ni(II), Pâ¢-Ni(I), or even a P+-Ni(0) character. Such an inner-sphere electron transfer is suggested when a π-acidic ligand such as CO coordinates to a metal ion. Another possible reaction is homolysis of a Ni-O bond to give P--Ni(I) or Pâ¢-Ni(0), when a phenoxyl radical is liberated. Considering the P-O bond formation, closed-shell nucleophilic and open-shell radical pathways are suggested. A phenolate pathway reveals a lower energy state for 2e relative to other complexes (2c and 2d), while its radical pathway undergoes via a higher energy state. Therefore, the formation of a P-O bond may occur with the binding of a closed-shell phenolate to the electron-deficient P center.
RESUMO
Coronaviruses infect cells by cytoplasmic or endosomal membrane fusion, driven by the spike (S) protein, which must be primed by proteolytic cleavage at the S1/S2 furin cleavage site (FCS) and the S2' site by cellular proteases. Exogenous trypsin as a medium additive facilitates isolation and propagation of several coronaviruses in vitro. Here, we show that trypsin enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in cultured cells and that SARS-CoV-2 enters cells via either a non-endosomal or an endosomal fusion pathway, depending on the presence of trypsin. Interestingly, trypsin enabled viral entry at the cell surface and led to more efficient infection than trypsin-independent endosomal entry, suggesting that trypsin production in the target organs may trigger a high level of replication of SARS-CoV-2 and cause severe tissue injury. Extensive syncytium formation and enhanced growth kinetics were observed only in the presence of exogenous trypsin when cell-adapted SARS-CoV-2 strains were tested. During 50 serial passages without the addition of trypsin, a specific R685S mutation occurred in the S1/S2 FCS (681PRRAR685) that was completely conserved but accompanied by several mutations in the S2 fusion subunit in the presence of trypsin. These findings demonstrate that the S1/S2 FCS is essential for proteolytic priming of the S protein and fusion activity for SARS-CoV-2 entry but not for viral replication. Our data can potentially contribute to the improvement of SARS-CoV-2 production for the development of vaccines or antivirals and motivate further investigations into the explicit functions of cell-adaptation-related genetic drift in SARS-CoV-2 pathogenesis.
Assuntos
COVID-19 , Internalização do Vírus , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , TripsinaRESUMO
BACKGROUND In elderly patients, spinal anesthesia-induced hypotension (SAH) can be frequently caused by reduced preload and stiff ventricles. The primary purpose of this study was to investigate the ability of ultrasonographic carotid artery flow measurements during the passive leg raise (PLR) test to predict SAH in elderly patients. The correlation between preoperative transthoracic echocardiography (TTE) measurements and SAH was also investigated. MATERIAL AND METHODS The patients aged over 65 years scheduled for elective surgery under spinal anesthesia were recruited. Preoperative TTE was performed in all patients. Corrected carotid flow time and carotid blood flow were measured in the supine, semirecumbent, and PLR positions. Ultrasonographic carotid artery flow and preoperative TTE measurements were compared between patients who developed SAH and those who did not. Receiver operating characteristic (ROC) curve analysis and logistic regression analysis were used to test the association with SAH. RESULTS SAH occurred in 17 of 50 patients. Carotid blood flow in the semirecumbent position and preoperative mitral inflow E velocity could predict SAH, showing an area under the ROC curve of 0.754 (95% CI, 0.612-0.865) and 0.775 (95% CI, 0.634-0.881), respectively. However, according to the multivariate analysis, the independent risk factor for SAH was mitral inflow E velocity (OR 0.918, 95% CI 0.858-0.982, P=0.013). CONCLUSIONS In elderly patients, ultrasonographic carotid artery flow measurements failed to predict the occurrence of SAH. Only preoperative mitral inflow E velocity of TTE was selected as an independent risk factor for SAH.
Assuntos
Raquianestesia , Hipotensão Controlada , Idoso , Humanos , Raquianestesia/efeitos adversos , Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Primitiva , Estudos ProspectivosRESUMO
PURPOSE: Little is known about the arthroscopic or radiographic outcomes after arthroscopic microfracture of osteochondral lesions of the talus (OLTs). The purpose of this study was to investigate tissue growth after arthroscopic microfracture of OLTs using computed tomography arthrography (CTA) and to identify the relationship between CTA findings and clinical outcomes. We hypothesized that the morphology of the repaired tissue would be similar to that of normal anatomy and correlate with the clinical outcomes. METHODS: Forty-two ankles treated using arthroscopic microfracture of OLTs between 2009 and 2014 were monitored. CTA was performed post-operatively at 6 months and at 1 and 2 years after surgery. The post-operative thickness of the repaired tissue associated with OLT (grade) and the volume of the subchondral cystic lesions were evaluated using CTA. Clinical outcomes, including the pain visual analog scale (VAS) and American Orthopaedic Foot and Ankle Society (AOFAS) ankle functional scores, were evaluated and correlated with CTA. RESULTS: The proportion of fully grown tissue (grade 3) increased over time; specifically, the rates were 12/40 (33.3%) at 6 months, 11/18 (61.1%) at 1 year, and 8/10 (80%) at 2 years after surgery (p = 0.005). The VAS pain (p < 0.001) and AOFAS scores (p < 0.001) were also improved at the final follow-up; however, they were not associated with repaired tissue thickness as shown by CTA (n.s.). CONCLUSIONS: After microfracture of OLTs, tissue growth in the osteochondral defects was well visualized using CT arthrography and was observed in most cases. However, the CTA findings were not related to the clinical outcomes. LEVEL OF EVIDENCE: IV.
Assuntos
Articulação do Tornozelo/diagnóstico por imagem , Artrografia/métodos , Artroplastia Subcondral , Cartilagem Articular/diagnóstico por imagem , Tálus/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Articulação do Tornozelo/fisiopatologia , Articulação do Tornozelo/cirurgia , Artroscopia , Cartilagem Articular/fisiopatologia , Cartilagem Articular/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Tálus/fisiopatologia , Tálus/cirurgia , Cicatrização/fisiologia , Adulto JovemRESUMO
A single Au nanoparticle (NP) with a diameter of 5 nm was transferred to the end of a Si-tip through a picking process, and an Ag shell with a controlled thickness was formed on the Au core. By carrying out tip-enhanced Raman scattering (TERS) measurements on biphenyl-4-thiol (BPT) with the Au@Ag NP-tip (overall diameter of 22-60 nm), we confirm that such tips show a plasmonic local-field enhancement which is sufficient for tip-enhanced spectro-microscopy.
RESUMO
[Purpose] We aimed to examine the effectiveness of a community-based virtual reality treadmill training (CVRTT) program on static balance abilities in patients with stroke. [Subjects and Methods] Patients (n = 20) who suffered a stroke at least 6 months prior to the study were recruited. All subjects underwent conventional physical therapy for 60â min/day, 5 days/week, for 4 weeks. Additionally, the CVRTT group underwent community-based virtual reality scene exposure combined with treadmill training for 30â min/day, 3 days/week, for 4 weeks, whereas the control group underwent conventional physical therapy, including muscle strengthening, balance training, and indoor and outdoor gait training, for 30â min/day, 3 days/week, for 4 weeks. Outcome measurements included the anteroposterior, mediolateral, and total postural sway path lengths and speed, which were recorded using the Balancia Software on a Wii Fit(™) balance board. [Results] The postural sway speed and anteroposterior and total postural sway path lengths were significantly decreased in the CVRTT group. Overall, the CVRTT group showed significantly greater improvement than the control group. [Conclusions] The present study results can be used to support the use of CVRTT for effectively improving balance in stroke patients. Moreover, we determined that a CVRTT program for stroke patients is both feasible and suitable.
RESUMO
This study was conducted in order to investigate whether the presence of light or different colors of light would influence the energy expenditure and behavior of broiler chickens. Eight 8-week-old broiler chickens were adapted to a respiration chamber (Length, 28.5 cm; Height, 38.5 cm; Width, 44.0 cm) for one week prior to the initiation of the experiment. In experiment 1, energy expenditure and behavior of the chickens were analyzed in the presence or absence of light for four days. Chickens were exposed to 6 cycles of 2 h light/2 h dark period per day. In experiment 2, the broiler chickens that had been used in experiment 1 were used to evaluate the effect of 4 different wavelength light-emitting diodes (LEDs) on the energy expenditure and behavior of broiler chickens. The LEDs used in this study had the following wavelength bands; white (control), red (618 to 635 nm), green (515 to 530 nm) and blue (450 to 470 nm). The chickens were randomly exposed to a 2-h LED light in a random and sequential order per day for 3 days. Oxygen consumption and carbon dioxide production of the chickens were recorded using an open-circuit calorimeter system, and energy expenditure was calculated based on the collected data. The behavior of the chickens was analyzed based on following categories i.e., resting, standing, and pecking, and closed-circuit television was used to record these behavioral postures. The analysis of data from experiment 1 showed that the energy expenditure was higher (p<0.001) in chickens under light condition compared with those under dark condition. The chickens spent more time with pecking during a light period, but they frequently exhibited resting during a dark period. Experiment 2 showed that there was no significant difference in terms of energy expenditure and behavior based on the color of light (white, red, green, and blue) to which the chickens were exposed. In conclusion, the energy expenditure and behavior of broiler chickens were found to be strongly affected by the presence of light. On the other hand, there was no discernible difference in their energy expenditure and behavior of broiler chickens exposed to the different LED lights.
RESUMO
Stretchable electronics has received major attention in recent years due to the prospects of integrating electronics onto and into the human body. While many studies investigate how different conductive fillers perform in stretchable composites, the effect of different elastomers on composite performance, and the related fundamental understanding of what is causing the performance differences, is poorly understood. Here, we perform a systematic investigation of the elastomer influence on the electromechanical performance of gold nanowire-based stretchable conductors based on five chemically different elastomers of similar Young's modulus. The choice of elastomer has a huge impact on the electromechanical performance of the conductors under cyclic strain, as some composites perform well, while others fail rapidly at 100% strain cycling. The lack of macroscopic crack formation in the failing composites indicates that the key aspect for good electromechanical performance is not homogeneous films on the macroscale but rather beneficial interactions on the nanoscale. Based on the comprehensive characterization, we propose a failure mechanism related to the mechanical properties of the elastomers. By improving our understanding of elastomer influence on the mechanisms of electrical failure, we can move toward rational material design, which could greatly benefit the field of stretchable electronics.
RESUMO
The redox-diffusion (RD) battery concept introduces an environmentally friendly solution for stretchable batteries in autonomous wearable electronics. By utilising plant-based redox-active biomolecules and cellulose fibers for the electrode scaffold, separator membrane, and current collector, along with a biodegradable elastomer encapsulation, the battery design overcomes the reliance on unsustainable transition metal-based active materials and non-biodegradable elastomers used in existing stretchable batteries. Importantly, it addresses the drawback of limited attainable battery capacity, where increasing the active material loading often leads to thicker and stiffer electrodes with poor mechanical properties. The concept decouples the active material loading from the mechanical structure of the electrode, enabling high mass loadings, while retaining a skin-like young's modulus and stretchability. A stretchable ion-selective membrane facilitates the RD process, allowing two separate redox couples, while preventing crossovers. This results in a high-capacity battery cell that is both electrochemically and mechanically stable, engineered from sustainable plant-based materials. Notably, the battery components are biodegradable at the end of their life, addressing concerns of e-waste and resource depletion.
Assuntos
Fontes de Energia Elétrica , Oxirredução , Dispositivos Eletrônicos Vestíveis , Eletrodos , Celulose/química , Difusão , Plantas/química , Elastômeros/químicaRESUMO
This study aimed to evaluate the adverse effects of particulate matter (PM) exposure on endometrial cells and fertility and to identify possible underlying mechanisms. Thirteen women (aged 15-52 years) were included in this study. Enrolled patients underwent laparoscopic surgery at Gangnam Severance Hospital between 1 January and 31 December 2021. For in vivo experiments, 36 female and nine male C57BL/6 mice were randomly divided into control(vehicle), low-dose(10 mg/kg/d), and high-dose exposure groups(20 mg/kg/d). PM was inhaled nasally for four weeks and natural mating was performed. NIST® SRM® 1648a was used for PM exposure. qRT-PCR, western blotting and Masson's trichrome staining were performed. PM treatment in human endometrial stromal cells induced inflammation with significant upregulation of IL-1ß, p-NF-kB, and p-c-Jun compared to those of controls. Additionally, PM treatment significantly increased apoptosis in human endometrial stromal cells by downregulating p-AKT and upregulating p-p53/p53, Cas-3, BAX/Bcl-2, p-AMPK, and p-ERK. After PM treatment, the relative expression of IL-1ß, IL-6, TNF-α, p-NF-κB, p-c-Jun, and p-Nrf2/Nrf2 significantly increased in murine endometrium compared to those of the controls. Expression of apoptotic proteins p53, p27, and Cas-3, was also significantly elevated in murine endometrium of the PM exposure group compared to that of the controls. A significant increase in expression of procollagen â , and Masson's trichrome staining scores in the murine endometrium was noted after PM treatment. PM treatment significantly decreased ERα expression. After natural mating, all 3 female mice in the control group gave birth to 25 offspring (mean 8.1), whereas in the low-dose PM treatment group, two of three female mice gave birth to nine offspring (mean 4.5). No pregnant mice or offspring was present in the high-dose PM treatment group. PM exposure induces adverse effects on the endometrium through aberrant activation of inflammatory and apoptotic pathways and is associated with detrimental effects on murine fertility.
Assuntos
Apoptose , Endométrio , Fertilidade , Inflamação , Camundongos Endogâmicos C57BL , Material Particulado , Material Particulado/toxicidade , Feminino , Animais , Humanos , Apoptose/efeitos dos fármacos , Camundongos , Adulto , Endométrio/efeitos dos fármacos , Masculino , Adolescente , Adulto Jovem , Inflamação/induzido quimicamente , Pessoa de Meia-Idade , Fertilidade/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Células Estromais/efeitos dos fármacosRESUMO
A wide range of nanophotonic applications rely on polarization-dependent plasmonic resonances, which usually requires metallic nanostructures that have anisotropic shape. This work demonstrates polarization-dependent plasmonic resonances instead by breaking symmetry via material permittivity. The study shows that molecular alignment of a conducting polymer can lead to a material with polarization-dependent plasma frequency and corresponding in-plane hyperbolic permittivity region. This result is not expected based only on anisotropic charge mobility but implies that also the effective mass of the charge carriers becomes anisotropic upon polymer alignment. This unique feature is used to demonstrate circularly symmetric nanoantennas that provide different plasmonic resonances parallel and perpendicular to the alignment direction. The nanoantennas are further tuneable via the redox state of the polymer. Importantly, polymer alignment could blueshift the plasma wavelength and resonances by several hundreds of nanometers, forming a novel approach toward reaching the ultimate goal of redox-tunable conducting polymer nanoantennas for visible light.
RESUMO
The development of an ideal solution-processable transparent electrode has been a challenge in the field of all-solution-processed semitransparent organic solar cells (ST-OSCs). We present a novel poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) top electrode for all-solution-processed ST-OSCs through in situ doping of PEDOT:PSS. A strongly polarized long perfluoroalkyl (n = 8) chain-anchored sulfonic acid effectively eliminates insulating PSS and spontaneously crystallizes PEDOT at room temperature, leading to outstanding electrical properties and transparency of PEDOT top electrodes. Doped PEDOT-based ST-OSCs yield a high power conversion efficiency of 10.9% while providing an average visible transmittance of 26.0% in the visible range. Moreover, the strong infrared reflectivity of PEDOT enables ST-OSCs to reject 62.6% of the heat emitted by sunlight (76.7% from infrared radiation), outperforming the thermal insulation capability of commercial tint films. This light management approach using PEDOT enables ST-OSCs to simultaneously provide energy generation and energy savings, making it the first discovery toward sustainable energy in buildings.
RESUMO
Platycosides, major components of Platycodon grandiflorum (PG) extract, have been implicated in a wide range of biological effects. In particular, platycodin D (PD) is a well-known main bioactive compound of Platycosides. Despite the biological significance of PD, optimization of extract condition for PD from PG root has not been well investigated. Here, we established the optimum extraction condition as ethanol concentration of 0%, temperature of 50°C, and extraction time of 11 h to obtain PD-rich P. grandiflorum extract (PGE) by using response surface methodology (RSM) with Box-Behnken design (BBD). The 5.63 mg/g of PD was extracted from the PG root in optimum condition, and this result was close to the predicted PD content. To analyze the biological activity of PGE related to mucin production, we demonstrated the inhibitory effect of PGE on PMA-induced hyperexpression of MUC5AC as well as ERK activation, a signal mediator of MUC5AC expression. Moreover, we showed that PGE had expectorant activity in mice. These results indicated that PGE had sufficient functions as a potential mucoregulator and expectorant for treating diverse airway diseases. Additionally, we confirmed that PGE had antioxidant activity and inhibited LPS-induced proinflammatory cytokines, TNF-α, and IL-6. Taken together, PGE derived from novel optimizing conditions showed various biological effects, suggesting that PGE could be directly applied to the food industry as food material having therapeutic and preventive potential for human airway diseases.
RESUMO
We investigated the charge dynamics of the conductivity enhancement from 2 to 1000 S/cm in poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) as induced by structural changes through the addition of a polar solvent and the following solvent bath treatment. Our results indicate that the addition of a polar solvent selectively enhanced the π-π coupling of the polymer chains, resulting in the reduction of disorder and tremendously increasing the charge carrier mobility, which yielded an insulator-to-metal transition. In contrast, the following solvent bath treatment selectively enhanced the intergrain coupling, which did not affect the disorder or the mobility but increased the charge carrier density. Therefore, we demonstrate that the conduction-character defining disorder in this conducting polymer system is determined by the extent of interchain coupling.
RESUMO
The purpose of the present study was to identify the factor structure of neurocognitive tests used on schizophrenia patients by using the confirmative factor analysis, and to assess the factor score differences of schizophrenia patients and healthy controls. Comprehensive neurocognitive tests were administered to stabilized schizophrenia patients (N=114) and healthy controls (N=120). In the results of factor analyses on patients, the multifactorial-6-factor model, which included the speed of processing, working memory, verbal learning and memory, visual learning and memory, attention/vigilance, and reasoning/problem solving as suggested by the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS), showed the better goodness of fit than any of the other models tested. And assessing the group differences of factor scores, we found the patients performed worse than the controls in all factors, but the result showed meaningful variations of impairments across the cognitive factors. Our study identifies the six major domains with multifactorial structure of cognitive abilities in schizophrenia patients and confirms the distinctive impairment patterns of each cognitive domain. These results may have utility in better understanding the pathology of schizophrenia as well as in genetic studies.
Assuntos
Esquizofrenia/diagnóstico , Adolescente , Adulto , Atenção , Transtornos Cognitivos/etiologia , Análise Fatorial , Feminino , Humanos , Masculino , Memória , Pessoa de Meia-Idade , Modelos Psicológicos , Testes Neuropsicológicos , Resolução de Problemas , Esquizofrenia/etiologia , Índice de Gravidade de Doença , Comportamento Verbal , Aprendizagem VerbalRESUMO
The rapid growth of wearables has created a demand for lightweight, elastic and conformal energy harvesting and storage devices. The conducting polymer poly(3,4-ethylenedioxythiophene) has shown great promise for thermoelectric generators, however, the thick layers of pristine poly(3,4-ethylenedioxythiophene) required for effective energy harvesting are too hard and brittle for seamless integration into wearables. Poly(3,4-ethylenedioxythiophene)-elastomer composites have been developed to improve its mechanical properties, although so far without simultaneously achieving softness, high electrical conductivity, and stretchability. Here we report an aqueously processed poly(3,4-ethylenedioxythiophene)-polyurethane-ionic liquid composite, which combines high conductivity (>140 S cm-1) with superior stretchability (>600%), elasticity, and low Young's modulus (<7 MPa). The outstanding performance of this organic nanocomposite is the result of favorable percolation networks on the nano- and micro-scale and the plasticizing effect of the ionic liquid. The elastic thermoelectric material is implemented in the first reported intrinsically stretchable organic thermoelectric module.
RESUMO
OBJECTIVE-To evaluate the mydriatic effect of intracameral injection of preservative-free 1% and 2% lidocaine hydrochloride solutions and determine the onset and duration of mydriasis according to the concentration and volume of lidocaine administered in healthy dogs. ANIMALS-5 healthy adult Beagles weighing 7 to 10 kg, with no apparent ocular disease. PROCEDURES-A double-blind randomized 9-session crossover trial was designed. Both eyes were assigned to 9 treatments with a minimum 7-day washout period between treatments: 0.1, 0.2, and 0.3 mL of 2% lidocaine solution; 0.1, 0.2, and 0.3 mL of 1% lidocaine solution; and 0.1, 0.2, and 0.3 mL of balanced salt solution. Dogs were anesthetized, and the allocated treatment was injected intracamerally after aspiration of the same volume of aqueous humor from the anterior chamber of each eye. Two perpendicular pupil diameters were measured. Intraocular pressure, heart rate, respiratory rate, ECG readings, and end-tidal partial pressure of CO(2) were monitored. RESULTS-Intracameral injection of 1% or 2% lidocaine solutions in volumes of 0.1 to 0.3 mL induced a significant degree of mydriasis, and the effect was maintained for 74 to 142 minutes. Lidocaine injection had no significant effect on intraocular pressure, heart rate, respiratory rate, ECG readings, or end-tidal partial pressure of CO(2). CONCLUSIONS AND CLINICAL RELEVANCE-Intracameral lidocaine injection in healthy dogs induced mydriasis, the timing of which was affected by concentration and volume of lidocaine. This technique could serve as an alternative to topically administered mydriatics for intraocular surgery in dogs.
Assuntos
Cães , Lidocaína/farmacologia , Midríase/induzido quimicamente , Midriáticos/farmacologia , Animais , Estudos Cross-Over , Relação Dose-Resposta a Droga , Feminino , Lidocaína/administração & dosagem , Masculino , Midriáticos/administração & dosagemRESUMO
The gelation of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has gained popularity for its potential applications in three dimensions, while possessing tissue-like mechanical properties, high conductivity, and biocompatibility. However, the fabrication of arbitrary structures, especially via inkjet printing, is challenging because of the inherent gel formation. Here, microreactive inkjet printing (MRIJP) is utilized to pattern various 2D and 3D structures of PEDOT:PSS/IL hydrogel by in-air coalescence of PEDOT:PSS and ionic liquid (IL). By controlling the in-air position and Marangoni-driven encapsulation, single droplets of the PEDOT:PSS/IL hydrogel as small as a diameter of ≈260 µm are fabricated within ≈600 µs. Notably, this MRIJP-based PEDOT:PSS/IL has potential for freeform patterning while maintaining identical performance to those fabricated by the conventional spin-coating method. Through controlled deposition achieved via MRIJP, PEDOT:PSS/IL can be transformed into different 3D structures without the need for molding, potentially leading to substantial progress in next-generation bioelectronics devices.