RESUMO
Wireless modules that provide telecommunications and power-harvesting capabilities enabled by radio-frequency (RF) electronics are vital components of skin-interfaced stretchable electronics1-7. However, recent studies on stretchable RF components have demonstrated that substantial changes in electrical properties, such as a shift in the antenna resonance frequency, occur even under relatively low elastic strains8-15. Such changes lead directly to greatly reduced wireless signal strength or power-transfer efficiency in stretchable systems, particularly in physically dynamic environments such as the surface of the skin. Here we present strain-invariant stretchable RF electronics capable of completely maintaining the original RF properties under various elastic strains using a 'dielectro-elastic' material as the substrate. Dielectro-elastic materials have physically tunable dielectric properties that effectively avert frequency shifts arising in interfacing RF electronics. Compared with conventional stretchable substrate materials, our material has superior electrical, mechanical and thermal properties that are suitable for high-performance stretchable RF electronics. In this paper, we describe the materials, fabrication and design strategies that serve as the foundation for enabling the strain-invariant behaviour of key RF components based on experimental and computational studies. Finally, we present a set of skin-interfaced wireless healthcare monitors based on strain-invariant stretchable RF electronics with a wireless operational distance of up to 30 m under strain.
Assuntos
Elasticidade , Eletrônica , Desenho de Equipamento , Ondas de Rádio , Pele , Estresse Mecânico , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Eletrônica/instrumentação , Tecnologia sem Fio/instrumentação , Monitorização Fisiológica/instrumentaçãoRESUMO
Bioelectronics encompassing electronic components and circuits for accessing human information play a vital role in real-time and continuous monitoring of biophysiological signals of electrophysiology, mechanical physiology, and electrochemical physiology. However, mechanical noise, particularly motion artifacts, poses a significant challenge in accurately detecting and analyzing target signals. While software-based "postprocessing" methods and signal filtering techniques have been widely employed, challenges such as signal distortion, major requirement of accurate models for classification, power consumption, and data delay inevitably persist. This review presents an overview of noise reduction strategies in bioelectronics, focusing on reducing motion artifacts and improving the signal-to-noise ratio through hardware-based approaches such as "preprocessing". One of the main stress-avoiding strategies is reducing elastic mechanical energies applied to bioelectronics to prevent stress-induced motion artifacts. Various approaches including strain-compliance, strain-resistance, and stress-damping techniques using unique materials and structures have been explored. Future research should optimize materials and structure designs, establish stable processes and measurement methods, and develop techniques for selectively separating and processing overlapping noises. Ultimately, these advancements will contribute to the development of more reliable and effective bioelectronics for healthcare monitoring and diagnostics.
Assuntos
Artefatos , Humanos , Movimento (Física) , Eletrônica , Desenho de Equipamento , Razão Sinal-Ruído , Técnicas BiossensoriaisRESUMO
Printing of stretchable conductors enables the fabrication and rapid prototyping of stretchable electronic devices. For such applications, there are often specific process and material requirements such as print resolution, maximum strain, and electrical/ionic conductivity. This review highlights common printing methods and compatible inks that produce stretchable conductors. The review compares the capabilities, benefits, and limitations of each approach to help guide the selection of a suitable process and ink for an intended application. We also discuss methods to design and fabricate ink composites with the desired material properties (e.g., electrical conductance, viscosity, printability). This guide should help inform ongoing and future efforts to create soft, stretchable electronic devices for wearables, soft robots, e-skins, and sensors.
RESUMO
Light-based neuromodulation systems offer exceptional spatiotemporal resolution combined with the elimination of physical tether to communicate with neurons. Currently, optical neuromodulation systems ranging from the nano to the centimeter scale enable neural activity control from the single cell to the organ level in retina, heart, spinal cord, and brain, facilitating a wide range of experiments in intact and freely moving animals in different contexts, such as during social interactions and behavioral tasks. Nanotransducers (e.g., metallic nanoparticles, silicon nanowires, and polymeric nanoparticles) and microfabricated photodiodes convert light to electrical, thermal, and mechanical stimuli that can allow remote and non-contact stimulation of neurons. Moreover, integrated devices composed of nano and microscale optoelectronic components comprise fully implantable and wirelessly powered smart optoelectronic systems that exhibit multimodal and closed-loop operation. In this review, we first discuss the material platforms, stimulation mechanisms, and applications of passive systems, i.e., nanotransducers and microphotodiodes. Then, we review the use of organic and inorganic light-emitting diodes for optogenetics and implantable wireless optoelectronic systems that enable closed-loop optogenetic neuromodulation through the use of light-emitting diodes, wireless power transfer circuits, and feedback loops. Exploration of materials and mechanisms together with the presented applications from both research and clinical perspectives in this review provides a comprehensive understanding of the optical neuromodulation field with its advantages and challenges to build superior systems in the future.
Assuntos
Nanoestruturas , Tecnologia sem Fio , Animais , Encéfalo/fisiologia , Próteses e Implantes , NeurôniosRESUMO
The development of fabrication technologies and appearance of new materials has resulted in dramatic increase in the performance of electronic devices, while the overall size has decreased. Recent electronic devices made of micro/nano-size components show high efficiency and outstanding performance with compact size, but these devices have revealed several fatal problems. In particular, the isolated heat that is generated by numerous components concentrated in a limited small area at high density, such as bio-integrated devices, is an issue that needs to be urgently addressed, because it is closely related to the performance and lifetime of electronic devices. To solve these problems, the microscale light emitting diode (µLED)-based neural probe is introduced on an injectable heat dissipation guide. The heat dissipation guide is made of boron nitride (BN) nanomaterials with high thermal conductivity. The heat management noticeably improves the optical output performance of the µLEDs, in which BN effectively dissipates heat, and allows enhanced lighting from the LEDs to be transmitted through brain tissue without thermal damage. Moreover, it shows remarkable improvement in the therapeutic effect of photodynamic therapy of mouse cancer cells.
Assuntos
Nanoestruturas , Fotoquimioterapia , Animais , Camundongos , Temperatura Alta , Encéfalo , EletrônicaRESUMO
The recognition of pathogenic DNA is important to the initiation of antiviral responses. Here we report the identification of DDX41, a member of the DEXDc family of helicases, as an intracellular DNA sensor in myeloid dendritic cells (mDCs). Knockdown of DDX41 expression by short hairpin RNA blocked the ability of mDCs to mount type I interferon and cytokine responses to DNA and DNA viruses. Overexpression of both DDX41 and the membrane-associated adaptor STING together had a synergistic effect in promoting Ifnb promoter activity. DDX41 bound both DNA and STING and localized together with STING in the cytosol. Knockdown of DDX41 expression blocked activation of the mitogen-activated protein kinase TBK1 and the transcription factors NF-κB and IRF3 by B-form DNA. Our results suggest that DDX41 is an additional DNA sensor that depends on STING to sense pathogenic DNA.
Assuntos
RNA Helicases DEAD-box/fisiologia , DNA Helicases/fisiologia , DNA/metabolismo , Células Dendríticas/fisiologia , Proteínas de Membrana/fisiologia , Animais , Células da Medula Óssea/metabolismo , Células Cultivadas , Humanos , Interferons/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/virologia , Estrutura Terciária de Proteína , Transdução de SinaisRESUMO
Urokinase-type plasminogen activator receptor (uPAR) is a glycolipid-anchored protein located on the cell surface that is implicated in the promotion of metastasis. New fluorescent probes for the detection of uPAR expression that feature a rapid "turn-on" response are reported here. They consist of a donor-π-acceptor-based fluorophore conjugated with a uPAR-binding AE105 peptide. The resulting AE105-coupled uPAR-targeting probes are weakly emissive in aqueous buffer solutions; however, a fluorescence "turn-on" signal is instantly triggered upon specific binding to uPAR (KD =63.2â nM for P1 and 49.5â nM for P2), which restricts the rotational deactivation of the fluorophore. Applications of the probes were demonstrated in the imaging of uPAR overexpressed on the membrane of cancer cell and in a cell-based uPAR inhibitor assay.
Assuntos
Corantes Fluorescentes , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Membrana Celular/metabolismoRESUMO
The NLRP3 inflammasome plays a major role in innate immune responses by activating caspase-1, resulting in secretion of interleukin-18 (IL-18) and IL-1ß. Although cytosolic double-stranded RNA (dsRNA) and bacterial RNA are known to activate the NLRP3 inflammasome, the upstream sensor is unknown. We investigated the potential function of DExD/H-box RNA helicase family members (previously shown to sense cytosolic DNA and RNA to induce type 1 interferon responses) in RNA-induced NLRP3 inflammasome activation. Among the helicase family members tested, we found that targeting of DHX33 expression by short hairpin RNA efficiently blocked the activation of caspase-1 and secretion of IL-18 and IL-1ß in human macrophages that were activated by cytosolic poly I:C, reoviral RNA, or bacterial RNA. DHX33 bound dsRNA via the helicase C domain. DHX33 interacted with NLRP3 and formed the inflammasome complex following stimulation with RNA. We therefore identified DHX33 as a cytosolic RNA sensor that activates the NLRP3 inflammasome.
Assuntos
Proteínas de Transporte/imunologia , RNA Helicases DEAD-box/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , RNA/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/imunologia , Caspase 1/metabolismo , Linhagem Celular , Citosol/imunologia , Citosol/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Expressão Gênica/imunologia , Células HEK293 , Humanos , Immunoblotting , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-18/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Microscopia Confocal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Poli I-C/imunologia , Ligação Proteica/imunologia , RNA/genética , RNA/metabolismo , Interferência de RNA , RNA Bacteriano/imunologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/imunologia , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
We present electrophysiological (EP) signals correlated with cellular cell activities in the adrenal cortex and medulla using an adrenal gland implantable flexible EP probe. With such a probe, we could observe the EP signals from the adrenal cortex and medulla in response to various stress stimuli, such as enhanced hormone activity with adrenocorticotropic hormone, a biomarker for chronic stress response, and an actual stress environment, like a forced swimming test. This technique could be useful to continuously monitor the elevation of cortisol level, a useful indicator of chronic stress that potentially causes various diseases.
Assuntos
Glândulas Suprarrenais/fisiopatologia , Fenômenos Eletrofisiológicos/fisiologia , Estresse Fisiológico/fisiologia , Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/fisiopatologia , Glândulas Suprarrenais/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Masculino , Bulbo/metabolismo , Bulbo/fisiopatologia , RatosRESUMO
meso-Carboxyl-BODIPY responds to small electronic changes resulting from acyl substitution reactions with a marked change in fluorescence. Herein, the minute changes that accompany the thioester to amide conversion encountered in native chemical ligation (NCL) are exploited in the construction of fluorescent "turn-on" probes. Two fluorogenic probes, 1 a and 4, derived from a meso-thioester-BODIPY scaffold, were designed for the selective detection of cysteine (1 a) and aminopeptidase N (4), respectively. The aromatic (1 a) and aliphatic (4) thioesters of meso-carboxyl-BODIPY are nonfluorescent. However, specific analyte-induced conversion to the meso-amide derivative caused significant spectral changes and a dramatic fluorescence enhancement. Probe 1 a exhibited a large fluorescence "turn-on" response with high selectivity toward cysteine via a tandem NCL reaction. Probe 4 was successfully applied to the monitoring and imaging of endogenous aminopeptidase N in live cancer cells.
Assuntos
Cisteína , Corantes Fluorescentes , Compostos de Boro , Antígenos CD13RESUMO
BACKGROUND: Patients with inflammatory bowel disease (IBD) and intestinal Behçet's disease (BD) are vulnerable to micronutrient deficiencies due to diarrhea-related gastrointestinal loss and poor dietary intake caused by disease-related anorexia. However, few studies have investigated the incidence and risk factors for micronutrient deficiency. METHODS: We retrospectively analyzed 205 patients with IBD who underwent micronutrient examination, including folate, vitamin B12, 25-OH-vitamin D, and/or ferritin level quantification, with follow-up blood tests conducted 6 months later. RESULTS: Eighty patients (39.0%), who were deficient in any of the four micronutrients, were classified as the deficiency group, and the remaining 125 (61.0%) were classified as the non-deficient group. Compared to those in the non-deficiency group, patients in the deficiency group were much younger, had more Crohn's disease (CD) patients, more patients with a history of bowel operation, and significantly less 5-amino salicylic acid usage. Multivariate analysis revealed that CD and bowel operation were significant independent factors associated with micronutrient deficiency. CONCLUSIONS: The incidence of micronutrient deficiency was high (39.0%). Factors including CD, bowel operation, and younger ages were found to be associated with higher risks of deficiency. Therefore, patients with IBD, especially young patients with CD who have undergone bowel resection surgery, need more attention paid to micronutrition.
Assuntos
Síndrome de Behçet , Doenças Inflamatórias Intestinais , Deficiência de Vitamina D , Síndrome de Behçet/complicações , Síndrome de Behçet/epidemiologia , Ferritinas , Ácido Fólico , Humanos , Incidência , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/epidemiologia , Micronutrientes , Estudos Retrospectivos , Fatores de Risco , Vitamina B 12 , Vitamina D , Deficiência de Vitamina D/epidemiologiaRESUMO
Fluorescence-based amine-reactive dyes are highly valuable for the sensing of amines and the labeling of biomolecules. Although it would be highly desirable, large changes in emission spectra and intensity seldom accompany the conjugation of known amine-reactive dyes to their target molecules. On the contrary, amide bond formation between amines and the pentafluorophenyl (2-PFP) and succinimidyl (2-NHS) esters of meso-carboxyBODIPY results in significant changes in emission maxima (Δλ: 70-100 nm) and intensity (up to 3000-fold), enabling the fast (down to 5 min) and selective fluorogenic detection and labeling of amines, amino acids, and proteins. This approach further benefits from the demonstrated versatility and high reliability of activated ester chemistry, and background hydrolysis is negligible. The large "turn-on" response is a testament of the extreme sensitivity of meso-carboxyBODIPYs to the minimal changes in electronic properties that distinguish esters from amides. Applications to the detection of food spoilage, staining of proteins on electrophoretic gels or in living cells, and the expedited synthesis of organelle-specific fluorescence microscope imaging agents are further demonstrated.
Assuntos
Aminas/análise , Compostos de Boro/química , Ésteres/química , Corantes Fluorescentes/química , Proteínas/análise , Aminoácidos , Animais , Compostos de Boro/síntese química , Linhagem Celular Tumoral , Ésteres/síntese química , Peixes , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Imagem ÓpticaRESUMO
BACKGROUND & AIMS: Thiopurine-related myelosuppression (most frequently leukopenia) interferes with thiopurine therapy for patients with inflammatory bowel diseases (IBD). We investigated whether pretreatment analyses genetic variants associated with thiopurine-induced leukopenia could be used to effectively identify patients who required dose adjustments. METHODS: We performed a multicenter, prospective study of patients with IBD at 5 tertiary medical centers in Korea, from January 2016 through September 2018. Seventy-two patients were randomly assigned to a group that underwent genotype analysis for the NUDT15 variant (rs116855232) and FTO variant (rs79206939) and 3 common TPMT variants (rs1800460, rs1800462, rs1142345) associated with myelosuppression and 92 patients were assigned to a group that did not undergo genotype analysis (non-genotyping group). Patients heterozygous for any variant received 50 mg azathioprine equivalents, whereas those who were homozygous for any variant received alternative drugs. Patients who did not carry any of the genetic variants and patients in the non-genotyping group received 50 mg azathioprine equivalents followed by dose escalation up to 2-2.5 mg/kg. Myelosuppression was defined as white blood cell counts below 3000/µL, levels of hemoglobin 10 g/dL, or platelet counts below 100 K/µL. RESULTS: Twelve patients (16.7%) in the genotype analysis group and 33 patients (35.9%) in the non-genotyping group developed myelosuppression (P=.005). A multivariate analysis revealed that body mass indices above 21 kg/m2 (hazard ratio [HR], 0.43; 95% CI, 0.22-0.81; P = .009), pretreatment genotype analysis (HR, 0.37; 95% CI, 0.18-0.77; P = .008), and the maximum dose of thiopurines (HR, 0.34; 95% CI, 0.19-0.59; P < .001) independently decreased risk of myelosuppression. Pretreatment genotype analysis reduced numbers of outpatient clinic visit and numbers of patients with drug discontinuation or dose reductions. CONCLUSIONS: In a randomized controlled study of patients undergoing thiopurine therapy for IBD, we found that selection of therapy based on genetic variants associated with thiopurine-induced leukopenia significantly reduced the proportion of patients with myelosuppression during treatment. ClinicalTrials.gov no: NCT03719118.
Assuntos
Doenças Inflamatórias Intestinais , Metiltransferases , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Azatioprina/efeitos adversos , Genótipo , Humanos , Incidência , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mercaptopurina/efeitos adversos , Metiltransferases/genética , Estudos ProspectivosRESUMO
The innate immune system detects viral infection predominantly by sensing viral nucleic acids. We report the identification of a viral sensor, consisting of RNA helicases DDX1, DDX21, and DHX36, and the adaptor molecule TRIF, by isolation and sequencing of poly I:C-binding proteins in myeloid dendritic cells (mDCs). Knockdown of each helicase or TRIF by shRNA blocked the ability of mDCs to mount type I interferon (IFN) and cytokine responses to poly I:C, influenza A virus, and reovirus. Although DDX1 bound poly I:C via its Helicase A domain, DHX36 and DDX21 bound the TIR domain of TRIF via their HA2-DUF and PRK domains, respectively. This sensor was localized within the cytosol, independent of the endosomes. Thus, the DDX1-DDX21-DHX36 complex represents a dsRNA sensor that uses the TRIF pathway to activate type I IFN responses in the cytosol of mDCs.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , RNA Helicases DEAD-box/imunologia , Células Dendríticas/imunologia , RNA de Cadeia Dupla/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células Dendríticas/metabolismo , Humanos , Camundongos , Ligação Proteica , Transdução de SinaisRESUMO
Recently developed flexible mechanosensors based on inorganic silicon, organic semiconductors, carbon nanotubes, graphene platelets, pressure-sensitive rubber and self-powered devices are highly sensitive and can be applied to human skin. However, the development of a multifunctional sensor satisfying the requirements of ultrahigh mechanosensitivity, flexibility and durability remains a challenge. In nature, spiders sense extremely small variations in mechanical stress using crack-shaped slit organs near their leg joints. Here we demonstrate that sensors based on nanoscale crack junctions and inspired by the geometry of a spider's slit organ can attain ultrahigh sensitivity and serve multiple purposes. The sensors are sensitive to strain (with a gauge factor of over 2,000 in the 0-2 per cent strain range) and vibration (with the ability to detect amplitudes of approximately 10 nanometres). The device is reversible, reproducible, durable and mechanically flexible, and can thus be easily mounted on human skin as an electronic multipixel array. The ultrahigh mechanosensitivity is attributed to the disconnection-reconnection process undergone by the zip-like nanoscale crack junctions under strain or vibration. The proposed theoretical model is consistent with experimental data that we report here. We also demonstrate that sensors based on nanoscale crack junctions are applicable to highly selective speech pattern recognition and the detection of physiological signals. The nanoscale crack junction-based sensory system could be useful in diverse applications requiring ultrahigh displacement sensitivity.
Assuntos
Biomimética/métodos , Movimento , Nanotecnologia/métodos , Reconhecimento Automatizado de Padrão/métodos , Som , Aranhas/fisiologia , Vibração , Animais , Humanos , Mecanotransdução Celular/fisiologia , Música , Nanotecnologia/instrumentação , Platina/química , Maleabilidade , Pressão , Pele , Fala , Aranhas/anatomia & histologia , Asas de Animais/fisiologiaRESUMO
Sonodynamic therapy utilizes ultrasound (US)-responsive generation of reactive oxygen species (ROS) from sonosensitizer, and it is a powerful strategy for anti-cancer treatment in combination with chemotherapy. Herein, we report a precisely designed sonodynamic chemotherapeutics which exhibits US-responsive drug release via ROS generation from co-loaded sono-sensitizer. Doxorubicin (DOX)-coordinated titanium dioxide nanoparticles (TNPs) were encapsulated with polymeric phenyboronic acid (pPBA) via phenylboronic ester bond between pPBA and DOX. Loaded DOX was readily released under US irradiation due to the ROS-cleavable characteristics of phenylboronic ester bond. The size of nanoparticles was around 200â¯nm, and DOX was released by ROS generated under US irradiation. Tumor targeting by PBA moiety, intracellular ROS generation, and combined therapeutic effect against tumor cells were confirmed in vitro. Finally, we demonstrated high tumor accumulation and efficient tumor growth inhibition in tumor-bearing mice under US irradiation, which revealed potential as a multi-functional agent for sonodynamic chemotherapy.
Assuntos
Materiais Revestidos Biocompatíveis , Doxorrubicina , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias Experimentais , Titânio , Terapia por Ultrassom , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Titânio/química , Titânio/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In this study, we prepared stabilized vitamin A and C nanoemulsions, and investigated their efficacy on milk-specific proteins in bovine mammary epithelial cells (MAC-T). Emulsions of vitamin A (vit-A) and C (vit-C) were prepared using Lipoid S 75 and microfluidization. The particle size and polydispersity index (PDI) of nanoemulsified vit-A and vit-C were studied. The cytotoxic effect of nanoemulsion-free and nanoemulsified vit-A and vit-C was determined by an MTT assay. In addition, the efficacy of nanoemulsified vit-A and vit-C on the in vitro expression pattern of milk-specific proteins in MAC-T cells was investigated by quantitative RT-PCR. The results showed that the efficacies of stabilized nanoemulsions of vit-A and vit-C were 100% and 92.7%, respectively. The particle sizes were around 475.7 and 225.4 nm, and the zeta potentials were around -33.5 and -21.3 mV, respectively. The expression changes of αs2-, ß- and κ-casein were higher in the presence of a stabilized nanoemulsion of vit-A, compared with nanoemulsion-free vit-A. Furthermore, the expression changes of αs2- and ß-casein were lower and that of κ-casein was higher in the presence of a stabilized nanoemulsion of vit-C, compared with nanoemulsion-free vit-C. Thus, our findings demonstrate the efficacy of nanoemulsified vit-A and vit-C in changing the expression of milk-specific proteins in MAC-T cells.
Assuntos
Ácido Ascórbico/farmacologia , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/metabolismo , Vitamina A/farmacologia , Animais , Ácido Ascórbico/química , Bovinos , Linhagem Celular , Estabilidade de Medicamentos , Emulsões , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Técnicas Analíticas Microfluídicas , Proteínas do Leite/efeitos dos fármacos , Nanopartículas , Tamanho da Partícula , Vitamina A/químicaRESUMO
OBJECTIVE: Dairy cattle nutrient requirement systems acknowledge amino acid (AAs) requirements in aggregate as metabolizable protein (MP) and assume fixed efficiencies of MP used for milk protein. Regulation of mammary protein synthesis may be associated with AA input and milk protein output. The aim of this study was to evaluate the effect of nanoemulsified methionine and cysteine on the in-vitro expression of milk protein (casein) in bovine mammary epithelial cells (MAC-T cells). METHODS: Methionine and cysteine were nonionized using Lipoid S 75 by high-speed homogenizer. The nanoemulsified AA particle size and polydispersity index were determined by dynamic light scattering correlation spectroscopy using a high-performance particle sizer instrument. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the cytotoxicity effect of AAs with and without nanoionization at various concentrations (100 to 500 µg/mL) in mammary epithelial cells. MAC-T cells were subjected to 100% of free AA and nanoemulsified AA concentration in Dulbecco's modified Eagle medium/nutrient mixture F-12 (DMEM/F12) for the analysis of milk protein (casein) expression by the quantitative reverse transcription polymerase chain reaction method. RESULTS: The AA-treated cells showed that cell viability tended to decrease (80%) in proportion to the concentration before nanogenesis, but cell viability increased as much as 90% after nanogenesis. The analysis of the expression of genetic markers related to milk protein indicated that; αs2-casein increased 2-fold, κ-casein increased 5-fold, and the amount of unchanged ß-casein expression was nearly doubled in the nanoemulsified methionine-treated group when compared with the free-nanoemulsified methionine-supplemented group. On the contrary, the non-emulsified cysteine-administered group showed higher expression of genetic markers related to milk protein αs2-casein, κ-casein, and ß-casein, but all the genetic markers related to milk protein decreased significantly after nanoemulsification. CONCLUSION: Detailed knowledge of factors, such nanogenesis of methionine, associated with increasing cysteine and decreasing production of genetic markers related to milk protein (casein) will help guide future recommendations to producers for maximizing milk yield with a high level of milk protein casein.
RESUMO
The specific detection of eosinophil peroxidase (EPO) activity requires the difficult distinction between hypobromous acid generated by EPO and hypochlorous acid generated by other haloperoxidases. Here we report a fluorogenic probe that is halogenated with high kinetic selectivity (≥1200:1) for HOBr over HOCl. Heavy-atom effects do not quench the dibrominated product because of its self-assembly into emissive J-aggregates that provide a turn-on signal. Applications of this fluorogen to EPO activity assays, dipstick sensors, fluorescence imaging of EPO activity, assays of oxidative stress in cancer cells, and immune response detection in live mice are reported.
Assuntos
Peroxidase de Eosinófilo/análise , Corantes Fluorescentes/química , Imagem Óptica , Animais , Bromatos/química , Peroxidase de Eosinófilo/metabolismo , Corantes Fluorescentes/síntese química , Ácido Hipocloroso/química , Cinética , Camundongos , Estrutura Molecular , Tamanho da Partícula , Células RAW 264.7 , Propriedades de SuperfícieRESUMO
Low-dimensional nanomaterials are widely adopted as active sensing elements for electronic skins. When the nanomaterials are integrated with microscale architectures, the performance of the electronic skin is significantly altered. Here, it is shown that a high-performance flexible and stretchable electronic skin can be produced by incorporating a piezoresistive carbon nanotube composite into a hierarchical topography of micropillar-wrinkle hybrid architectures that mimic wrinkles and folds in human skin. Owing to the unique hierarchical topography of the hybrid architectures, the hybrid electronic skin exhibits versatile and superior sensing performance, which includes multiaxial force detection (normal, bending, and tensile stresses), remarkable sensitivity (20.9 kPa-1 , 17.7 mm-1 , and gauge factor of 707 each for normal, bending, and tensile stresses), ultrabroad sensing range (normal stress = 0-270 kPa, bending radius of curvature = 1-6.5 mm, and tensile strain = 0-50%), sensing tunability, fast response time (24 ms), and high durability (>10 000 cycles). Measurements of spatial distributions of diverse mechanical stimuli are also demonstrated with the multipixel electronic skin. The stress-strain behavior of the hybrid structure is investigated by finite element analysis to elucidate the underlying principle of the superior sensing performance of the electronic skin.