Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Mol Cell Cardiol ; 150: 12-22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011158

RESUMO

Salt sensitivity of blood pressure (SSBP) is a trait carrying strong prognostic implications for various cardiovascular diseases. To test the hypothesis that excessive maternal salt intake causes SSBP in offspring through a mechanism dependent upon arginine-vasopressin (AVP), we performed a series of experiments using offspring of the rat dams salt-loaded during pregnancy and lactation with 1.5% saline drink ("experimental offspring") and those with normal perinatal salt exposure ("control offspring"). Salt challenge, given at 7-8 weeks of age with either 2% saline drink (3 days) or 8% NaCl-containing chow (4 weeks), had little or no effect on systolic blood pressure (SBP) in female offspring, whereas the salt challenge significantly raised SBP in male offspring, with the magnitude of increase being greater in experimental, than control, rats. Furthermore, the salt challenge not only raised plasma AVP level more and caused greater depressor responses to V1a and V2 AVP receptor antagonists to occur in experimental, than control, males, but it also made GABA excitatory in a significant proportion of magnocellular AVP neurons of experimental males by depolarizing GABA equilibrium potential. The effect of the maternal salt loading on the salt challenge-elicited SBP response in male offspring was precluded by maternal conivaptan treatment (non-selective AVP receptor antagonist) during the salt-loading period, whereas it was mimicked by neonatal AVP treatment. These results suggest that the excessive maternal salt intake brings about SSBP in male offspring, both the programming and the expression of which depend on increased AVP secretion that may partly result from excitatory GABAergic action.


Assuntos
Pressão Sanguínea , Efeitos Tardios da Exposição Pré-Natal/patologia , Cloreto de Sódio na Dieta/efeitos adversos , Vasopressinas/metabolismo , Animais , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Feminino , Lactação/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/líquido cefalorraquidiano , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Sódio/sangue , Sódio/líquido cefalorraquidiano , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/patologia , Sístole/efeitos dos fármacos , Vasopressinas/sangue , Ácido gama-Aminobutírico/metabolismo
2.
Neurobiol Dis ; 145: 105064, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32889171

RESUMO

Nighttime light pollution is linked to metabolic and cognitive dysfunction. Many patients with autism spectrum disorders (ASD) show disturbances in their sleep/wake cycle, and may be particularly vulnerable to the impact of circadian disruptors. In this study, we examined the impact of exposure to dim light at night (DLaN, 5 lx) in a model of ASD: the contactin associated protein-like 2 knock out (Cntnap2 KO) mice. DLaN was sufficient to disrupt locomotor activity rhythms, exacerbate the excessive grooming and diminish the social preference in Cntnap2 mutant mice. On a molecular level, DLaN altered the phase and amplitude of PER2:LUC rhythms in a tissue-specific manner in vitro. Daily treatment with melatonin reduced the excessive grooming of the mutant mice to wild-type levels and improved activity rhythms. Our findings suggest that common circadian disruptors such as light at night should be considered in the management of ASD.


Assuntos
Transtorno do Espectro Autista , Depressores do Sistema Nervoso Central/farmacologia , Ritmo Circadiano/efeitos dos fármacos , Iluminação/efeitos adversos , Melatonina/farmacologia , Animais , Transtorno do Espectro Autista/genética , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética
3.
Drug Chem Toxicol ; 40(2): 125-133, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28125295

RESUMO

We aimed to evaluate the protective effects of Yuk-Mi-Jihwang-Tang (YJT) against acute restraint stress-induced brain oxidative damage. A water extract of YJT was prepared and subjected to high performance liquid chromatography - diode array detector-mass spectrometry (HPLC-DAD-MS). Thirty-six heads of C57BL/6J male mice (7 weeks) were divided into six groups (n = 6/group). The mice were orally administrated YJT (0, 50, 100, or 200 mg/kg) or vitamin C (100 mg/kg) for 5 consecutive days before 6 h of acute restraint stress. In the brain tissue, lipidperoxidation, antioxidant components, and pro-inflammatory cytokines were measured, and the serum corticosterone level was determined. Acute restraint stress-induced notably increased lipid peroxidation in brain tissues, and pretreatment with YJT showed a significant decreased the lipid peroxidation levels (p< 0.05). The levels of antioxidant components including total glutathione contents, activities of SOD and catalase were remarkably depleted by acute restraint stress, whereas these alterations were significantly restored by treatment with YJT (p< 0.05 or p< 0.01). The restraint stress markedly increased pro-inflammatory cytokines, such as TNF-α and IL-6 in the gene expression and protein levels (p< 0.05 or p< 0.01). Pretreatment with YJT significantly attenuated serum corticosterone (200 mg/kg, p < 0.05). YJT drastically attenuated the levels of 4- HNE, HO-1, Nox 2 and iNOSwhich were elevated during acute restraint stress, whereas the Nrf2 level was increased in brain tissue protein levels. Our data suggest that YJT protects the brain tissue against oxidative damage and regulates stress hormones.


Assuntos
Antioxidantes/farmacologia , Encefalopatias/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Imobilização , Degeneração Neural , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Animais , Ácido Ascórbico/farmacologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Enzimas/genética , Enzimas/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidrocortisona/sangue , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
4.
Biochem Biophys Res Commun ; 476(1): 42-8, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27207831

RESUMO

The generation of induced neural stem cells (iNSCs) from somatic cells using defined factors provides new avenues for basic research and cell therapies for various neurological diseases, such as Parkinson's disease, Huntington's disease, and spinal cord injuries. However, the transcription factors used for direct reprogramming have the potential to cause unexpected genetic modifications, which limits their potential application in cell therapies. Here, we show that a combination of four chemical compounds resulted in cells directly acquiring a NSC identity; we termed these cells chemically-induced NSCs (ciNSCs). ciNSCs expressed NSC markers (Pax6, PLZF, Nestin, Sox2, and Sox1) and resembled NSCs in terms of their morphology, self-renewal, gene expression profile, and electrophysiological function when differentiated into the neuronal lineage. Moreover, ciNSCs could differentiate into several types of mature neurons (dopaminergic, GABAergic, and cholinergic) as well as astrocytes and oligodendrocytes in vitro. Taken together, our results suggest that stably expandable and functional ciNSCs can be directly reprogrammed from mouse fibroblasts using a combination of small molecules without any genetic manipulation, and will provide a new source of cells for cellular replacement therapy of neurodegenerative diseases.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Animais , Diferenciação Celular , Linhagem Celular , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo
5.
Eur J Neurosci ; 42(7): 2467-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26215659

RESUMO

Histamine, a neurotransmitter/neuromodulator implicated in the control of arousal state, exerts a potent phase-shifting effect on the circadian clock in the rodent suprachiasmatic nucleus (SCN). In this study, the mechanisms by which histamine resets the circadian clock in the mouse SCN were investigated. As a first step, Ca(2+) -imaging techniques were used to demonstrate that histamine increases intracellular Ca(2+) concentration ([Ca(2+) ]i ) in acutely dissociated SCN neurons and that this increase is blocked by the H1 histamine receptor (H1R) antagonist pyrilamine, the removal of extracellular Ca(2+) and the L-type Ca(2+) channel blocker nimodipine. The histamine-induced Ca(2+) transient is reduced, but not blocked, by application of the ryanodine receptor (RyR) blocker dantrolene. Immunohistochemical techniques indicated that CaV 1.3 L-type Ca(2+) channels are expressed mainly in the somata of SCN cells along with the H1R, whereas CaV 1.2 channels are located primarily in the processes. Finally, extracellular single-unit recordings demonstrated that the histamine-elicited phase delay of the circadian neural activity rhythm recorded from SCN slices is blocked by pyrilamine, nimodipine and the knockout of CaV 1.3 channel. Again, application of dantrolene reduced but did not block the histamine-induced phase delays. Collectively, these results indicate that, to reset the circadian clock, histamine increases [Ca(2+) ]i in SCN neurons by activating CaV 1.3 channels through H1R, and secondarily by causing Ca(2+) -induced Ca(2+) release from RyR-mediated internal stores.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Relógios Circadianos/fisiologia , Histamina/fisiologia , Receptores Histamínicos H1/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Dantroleno/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nimodipina/farmacologia , Pirilamina/farmacologia , Transdução de Sinais
6.
Biochem Biophys Res Commun ; 457(3): 328-33, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25576869

RESUMO

Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly.


Assuntos
Proteínas de Choque Térmico HSP90/fisiologia , Vírus da Hepatite B/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Montagem de Vírus/fisiologia , Butionina Sulfoximina/farmacologia , Capsídeo/fisiologia , Sistema Livre de Células , DNA Viral/metabolismo , Glutationa/metabolismo , Proteínas de Choque Térmico HSP90/química , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Interações Hospedeiro-Patógeno , Humanos , Estresse Oxidativo , Conformação Proteica , Montagem de Vírus/efeitos dos fármacos
7.
Circ Res ; 113(12): 1296-307, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24103391

RESUMO

RATIONALE: Increased arginine-vasopressin (AVP) secretion is a key physiological response to hyperosmotic stress and may be part of the mechanism by which high-salt diets induce or exacerbate hypertension. OBJECTIVE: Using deoxycorticosterone acetate-salt hypertension model rats, we sought to test the hypothesis that changes in GABA(A) receptor-mediated inhibition in AVP-secreting magnocellular neurons contribute to the generation of Na(+)-dependent hypertension. METHODS AND RESULTS: In vitro gramicidin-perforated recordings in the paraventricular and supraoptic nuclei revealed that the GABAergic inhibition in AVP-secreting neurons was converted into excitation in this model, because of the depolarization of GABA equilibrium potential. Meanwhile, in vivo extracellular recordings in the supraoptic nuclei showed that the GABAergic baroreflexive inhibition of magnocellular neurons was transformed to excitation, so that baroreceptor activation may increase AVP release. The depolarizing GABA equilibrium potential shift in AVP-secreting neurons occurred progressively over weeks of deoxycorticosterone acetate-salt treatment along with gradual increases in plasma AVP and blood pressure. Furthermore, the shift was associated with changes in chloride transporter expression and partially reversed by bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor). Intracerebroventricular bumetanide administration during deoxycorticosterone acetate-salt treatment hindered the development of hypertension and rise in plasma AVP level. Muscimol (GABA(A) agonist) microinjection into the supraoptic nuclei in hypertensive rats increased blood pressure, which was prevented by previous intravenous V1a AVP antagonist injection. CONCLUSIONS: We conclude that the inhibitory-to-excitatory switch of GABAA receptor-mediated transmission in AVP neurons contributes to the generation of Na(+)-dependent hypertension by increasing AVP release. We speculate that normalizing the GABA equilibrium potential may have some utility in treating Na(+)-dependent hypertension.


Assuntos
Arginina Vasopressina/sangue , Hipertensão/sangue , Hipertensão/induzido quimicamente , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Cloreto de Sódio/toxicidade , Animais , Agonistas de Receptores de GABA-A/administração & dosagem , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem
8.
J Biochem Mol Toxicol ; 29(12): 552-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26184785

RESUMO

The objectives of present study were to investigate whether luteolin affects procoagulant proteinase activity and fibrin clot formation and influences thrombosis and coagulation in Sprague-Dawle rats. Luteolin significantly inhibited the enzymatic activity of thrombin and FXa activity by 29.1% and 16.2%. Luteolin also inhibited fibrin polymer formation in turbidity and microscopic analysis using fluorescent conjugate. Coagulation assay of luteolin was found to prolong activated partial thromboplastin time and prothrombin time. Moreover, luteolin protected the development of oxidative stress induced thrombosis in the FeCl3 -induced carotid arterial thrombus model. This study demonstrated that luteolin may be useful by reducing or preventing thrombotic challenge and can help us better understand the antithrombotic action of luteolin.


Assuntos
Antitrombinas/farmacologia , Luteolina/farmacologia , Trombose/prevenção & controle , Animais , Fatores de Coagulação Sanguínea/metabolismo , Artérias Carótidas/patologia , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Acupunct Meridian Stud ; 17(2): 55-68, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686429

RESUMO

Background: Parkinson's disease (PD) lacks disease-modifying drugs or sustainable interventions, creating an unmet treatment need. Investigating complementary and alternative medicines aims to improve PD patients' quality of life by alleviating symptoms and delaying the course of the disease. Objectives: In this single-center, prospective, observational, single-arm study, we aimed to assess the effectiveness and safety of acupuncture combined with exercise therapy and the Meridian Activation Remedy System (MARS). Methods: From March to October 2021, 13 PD patients with Hoehn and Yahr stages 1 to 3 were recruited. For 8 weeks, MARS intervention was carried out twice a week. T-statistics were used to evaluate functional near-infrared spectroscopy (fNIRS) and GAITRite outcomes. All of the remaining outcome variables were evaluated using the Wilcoxon signed-rank test. Results: The MARS intervention significantly reduced PD patients' Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDSUPDRS) Part III score (from 20.0 ± 11.8 to 8.8 ± 5.5, p = 0.003), 10-meter walk test speed (from 9.5 ± 1.8 to 8.7 ± 1.3 seconds, p = 0.040), and timed up and go time (from 9.8 ± 1.8 to 8.9 ± 1.4 seconds, p = 0.040). Moreover, the MDS-UPDRS Part II, fNIRS hemodynamics, 360-degree turn test, fall efficacy scale, and Parkinson's Disease Questionnaire 39 scores improved but not significantly. All participants completed the 8-week intervention without any adverse reactions. Conclusion: An 8-week MARS intervention improved motor symptoms in PD patients. In particular, improvements in UPDRS Part III scores exhibited large clinically important differences. The findings are encouraging, and a randomized controlled trial will be conducted to determine the efficacy and cost-effectiveness of MARS intervention.


Assuntos
Terapia por Acupuntura , Meridianos , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Terapia por Acupuntura/métodos , Resultado do Tratamento , Terapia por Exercício/métodos
10.
Adv Sci (Weinh) ; : e2400586, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984490

RESUMO

Electrical conductivity is a pivotal biophysical factor for neural interfaces, though optimal values remain controversial due to challenges isolating this cue. To address this issue, conductive substrates made of carbon nanotubes and graphene oxide nanoribbons, exhibiting a spectrum of conductivities from 0.02 to 3.2 S m-1, while controlling other surface properties is designed. The focus is to ascertain whether varying conductivity in isolation has any discernable impact on neural lineage specification. Remarkably, neural-tissue-like low conductivity (0.02-0.1 S m-1) prompted neural stem/progenitor cells to exhibit a greater propensity toward neuronal lineage specification (neurons and oligodendrocytes, not astrocytes) compared to high supraphysiological conductivity (3.2 S m-1). High conductivity instigated the apoptotic process, characterized by increased apoptotic fraction and decreased neurogenic morphological features, primarily due to calcium overload. Conversely, cells exposed to physiological conductivity displayed epigenetic changes, specifically increased chromatin openness with H3acetylation (H3ac) and neurogenic-transcription-factor activation, along with a more balanced intracellular calcium response. The pharmacological inhibition of H3ac further supported the idea that such epigenetic changes might play a key role in driving neuronal specification in response to neural-tissue-like, not supraphysiological, conductive cues. These findings underscore the necessity of optimal conductivity when designing neural interfaces and scaffolds to stimulate neuronal differentiation and facilitate the repair process.

11.
Neurobiol Sleep Circadian Rhythms ; 14: 100089, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36874931

RESUMO

In mammals, photic information delivered to the suprachiasmatic nucleus (SCN) via the retinohypothalamic tract (RHT) plays a crucial role in synchronizing the master circadian clock located in the SCN to the solar cycle. It is well known that glutamate released from the RHT terminals initiates the synchronizing process by activating ionotropic glutamate receptors (iGluRs) on retinorecipient SCN neurons. The potential role of metabotropic glutamate receptors (mGluRs) in modulating this signaling pathway has received less attention. In this study, using extracellular single-unit recordings in mouse SCN slices, we investigated the possible roles of the Gq/11 protein-coupled mGluRs, mGluR1 and mGluR5, in photic resetting. We found that mGluR1 activation in the early night produced phase advances in neural activity rhythms in the SCN, while activation in the late night produced phase delays. In contrast, mGluR5 activation had no significant effect on the phase of these rhythms. Interestingly, mGluR1 activation antagonized phase shifts induced by glutamate through a mechanism that was dependent upon CaV1.3 L-type voltage-gated Ca2+ channels (VGCCs). While both mGluR1-evoked phase delays and advances were inhibited by knockout (KO) of CaV1.3 L-type VGCCs, different signaling pathways appeared to be involved in mediating these effects, with mGluR1 working via protein kinase G in the early night and via protein kinase A signaling in the late night. We conclude that, in the mouse SCN, mGluR1s function to negatively modulate glutamate-evoked phase shifts.

12.
J Neurosci ; 31(37): 13312-22, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917814

RESUMO

In mammals, the increased secretion of arginine-vasopressin (AVP) (antidiuretic hormone) and oxytocin (natriuretic hormone) is a key physiological response to hyperosmotic stress. In this study, we examined whether chronic hyperosmotic stress weakens GABA(A) receptor-mediated synaptic inhibition in rat hypothalamic magnocellular neurosecretory cells (MNCs) secreting these hormones. Gramicidin-perforated recordings of MNCs in acute hypothalamic slices prepared from control rats and ones subjected to the chronic hyperosmotic stress revealed that this challenge not only attenuated the GABAergic inhibition but actually converted it into excitation. The hyperosmotic stress caused a profound depolarizing shift in the reversal potential of GABAergic response (E(GABA)) in MNCs. This E(GABA) shift was associated with increased expression of Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) in MNCs and was blocked by the NKCC inhibitor bumetanide as well as by decreasing NKCC activity through a reduction of extracellular sodium. Blocking central oxytocin receptors during the hyperosmotic stress prevented the switch to GABAergic excitation. Finally, intravenous injection of the GABA(A) receptor antagonist bicuculline lowered the plasma levels of AVP and oxytocin in rats under the chronic hyperosmotic stress. We conclude that the GABAergic responses of MNCs switch between inhibition and excitation in response to physiological needs through the regulation of transmembrane Cl(-) gradients.


Assuntos
Inibição Neural/fisiologia , Neurônios/fisiologia , Pressão Osmótica/fisiologia , Estresse Fisiológico/fisiologia , Vasopressinas/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Bumetanida/farmacologia , Estimulação Elétrica/métodos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Ocitocina/sangue , Ocitocina/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/biossíntese , Membro 2 da Família 12 de Carreador de Soluto , Estresse Fisiológico/efeitos dos fármacos , Vasopressinas/sangue
14.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35337091

RESUMO

Yukmijihwang-Tang is widely used in traditional Korean medicine to treat age-related disorders. In the present study, we re-prescribed Gami-Yukmijihwang-Tang (YJT), which is slightly modified from Yukmijihwang-Tang by adding more medicinal plants to evaluate its pharmacological effects on underlying mechanisms against repeated lipopolysaccharide (LPS)-injection-induced neuroinflammation in the hippocampus regions. C57BL/6J male mice (16-24 weeks old) were divided into six groups: (1) the control group (DW with 0.9% saline injection), (2) LPS group (DW with LPS injection), YJT groups ((3) 100, (4) 200, or (5) 400 mg/kg of YJT with LPS injection), and (6) glutathione (GSH) group (100 mg/kg of GSH with LPS injection), respectively. Mice were orally administrated with various doses of YJT or glutathione (GSH) for the first five days. Neuroinflammation in the hippocampus region was induced by repeated injection of LPS during the last three days. As predicted, LPS not only increased oxidative stress-related markers including malondialdehyde, 4-hydroxynonenal, nitrotryptophan, and hydrogen peroxide, but also drastically enhanced inflammatory reactions including nitric oxide, inducible nitric oxide synthase, p65, and toll-like receptor 4, respectively. YJT administration, on the other hand, notably decreased the above pathological alterations by enhancement of antioxidant capacities such as superoxide dismutase and catalase activities. To explain the underlying pharmacological actions of YJT, we focused on a representative epigenetic regulator, a nicotinamide adenine dinucleotide + (NAD+)-dependent chromatin enzyme, Sirtuin 6 (Sirt6). Neuroinflammation in hippocampus regions depleted Sirt6 at the protein level and this alteration directly affected the nuclear factor erythroid 2-related factor (Nrf2)/hemeoxygenase (HO)-1 signaling pathway in the LPS group; however, YJT significantly recovered the Sirt6 protein levels, and it could recover the abnormal status of Nrf2/HO-1 signaling pathways in the hippocampus regions. Additionally, Sirt6 led to the up-regulation of GSH sub-enzymes of mRNA expression and protein levels of total GSH content. These findings suggest that YJT can protect against LPS-induced neuroinflammation and oxidative stress by regulating the Sirt6-related pathways and normalizing the GSH redox cycle.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36193151

RESUMO

Nuclear receptor-related 1 protein (Nurr1) is a nuclear hormone receptor that protects dopaminergic neurons and is a promising therapeutic target for Parkinson's disease (PD). Parkinson's disease is a neurodegenerative disorder caused by the destruction of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and the long-term use of conventional dopamine replacement therapies causes many side effects, highlighting the need for new treatments such as complementary and alternative medicine. Ukgansan has been used in East Asia to treat neurological disorders, including neurodegenerative diseases, and has been reported to have strong effects in treating patients with PD. In addition, recent studies have reported that Ukgansan has a neuroprotective potential. However, there are no detailed studies on the mechanism of action of Nurr1. Thus, unlike previous studies, we focused on the Nurr1 pathways. We confirmed neurotoxicity and apoptosis signaling in the differentiated PC12 cells. In addition, to confirm the protective effect of Ukgansan, we conducted behavioral tests (motor coordination and postural balance, and bradykinesia) and tyrosine hydroxylase immunohistochemistry in both the SNpc and striatum. Specifically, this study demonstrated the effect of Ukgansan in protecting dopaminergic neurons and increasing Nurr1 involved in maintaining dopamine levels by activating Nurr1 expression in MPTP-induced PC12 cells and a mouse model of PD. In this mechanism, the loss of dopaminergic neurons and dopamine depletion were suppressed, and motor impairment caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity was improved. These results provide evidence that Ukgansan ameliorates PD's motor symptoms and progression.

16.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36355547

RESUMO

Jaeumgeonbi-Tang (JGT), a traditional herbal medicine, has been used to treat dizziness and vertigo in Korea and China for hundreds of years. The purpose of this study was to evaluate the pharmacological properties of JGT in chronic subjective dizziness (CSD) patients. A randomized, double-blind, parallel-group and placebo-controlled trial was performed with a total of 50 CSD patients. The patients were randomly assigned to one of two groups: JGT or placebo (n = 25 for each). All participants received the treatment (placebo or JGT, 24 g/day) for 4 weeks. We analyzed the serum levels of oxidative stressors, antioxidants, and stress hormones. Serum levels of lipid peroxidation, but not nitric oxide, were significantly decreased in the JGT group. JGT not only prevented the decline of serum total glutathione contents and total antioxidant capacity, but it also increased superoxide dismutase and catalase activities. Serum levels of stress hormones including cortisol, adrenaline, and serotonin were notably normalized by JGT treatment, but noradrenaline levels were not affected. Regarding the safety and tolerability of JGT, we found no allergic, adverse, or side effects in any of the participants. JGT showed beneficial effects on CSD patients by improving redox status and balancing psycho-emotional stress hormones.

17.
Artigo em Inglês | MEDLINE | ID: mdl-34659433

RESUMO

BACKGROUND: Herbal medicine is widely recommended to treat viral infectious diseases. Over 123,000,000 individuals have been infected with the coronavirus since a worldwide pandemic was declared in March 2020. We conducted this research to confirm the potential of herbal medicine as a treatment for coronavirus. METHODS: We infected the A549 cell line with betacoronavirus OC43 and then treated it with 100 µg/mL Hyunggaeyungyo-tang (HGYGT) or distilled water with a control of HGYGT. We measured the mRNA expression levels of proinflammatory cytokines and interferon stimulated genes (ISGs) to confirm the effectiveness of HGYGT upon coronavirus infection. RESULTS: We found that the effects of HYGYT decrease the expression level of pPKR, peIF2α, IFI6, IFI44, IFI44L, IFI27, IRF7, OASL, and ISG15 when administered to cells with coronavirus infection. The expressions of IL-1, TNF-α, COX-2, NF-κB, iNOS, and IKK mRNA were also significantly decreased in the HGYGT group than in the control group. CONCLUSION: Through the reduction of the amount of coronavirus RNA, our research indicates that HGYGT has antiviral effects. The reduction of IKK and iNOS mRNA levels indicate that HGYGT reduces coronavirus RNA expression and may inhibit the replication of coronavirus by acting on NF-kB/Rel pathways to protect oxidative injury. In addition, decreases in mRNA expression levels of proinflammatory cytokines indicate that the HGYGT may relieve the symptoms of coronavirus infections.

18.
Cardiovasc Res ; 117(10): 2263-2274, 2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32960965

RESUMO

AIMS: Abundant evidence indicates that oestrogen (E2) plays a protective role against hypertension. Yet, the mechanism underlying the antihypertensive effect of E2 is poorly understood. In this study, we sought to determine the mechanism through which E2 inhibits salt-dependent hypertension. METHODS AND RESULTS: To this end, we performed a series of in vivo and in vitro experiments employing a rat model of hypertension that is produced by deoxycorticosterone acetate (DOCA)-salt treatment after uninephrectomy. We found that E2 prevented DOCA-salt treatment from inducing hypertension, raising plasma arginine-vasopressin (AVP) level, enhancing the depressor effect of the V1a receptor antagonist (Phenylac1,D-Tyr(Et)2,Lys6,Arg8,des-Gly9)-vasopressin, and converting GABAergic inhibition to excitation in hypothalamic magnocellular AVP neurons. Moreover, we obtained results indicating that the E2 modulation of the activity and/or expression of NKCC1 (Cl- importer) and KCC2 (Cl- extruder) underpins the effect of E2 on the transition of GABAergic transmission in AVP neurons. Lastly, we discovered that, in DOCA-salt-treated hypertensive ovariectomized rats, CLP290 (prodrug of the KCC2 activator CLP257, intraperitoneal injections) lowered blood pressure, and plasma AVP level and hyperpolarized GABA equilibrium potential to prevent GABAergic excitation from emerging in the AVP neurons of these animals. CONCLUSION: Based on these results, we conclude that E2 inhibits salt-dependent hypertension by suppressing GABAergic excitation to decrease the hormonal output of AVP neurons.


Assuntos
Anti-Hipertensivos/farmacologia , Arginina Vasopressina/metabolismo , Núcleo Basal de Meynert/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Estradiol/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Hipertensão/prevenção & controle , Animais , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/fisiopatologia , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Nefrectomia , Ovariectomia , Ratos Sprague-Dawley , Cloreto de Sódio na Dieta , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Vasoconstrição/efeitos dos fármacos
19.
BMC Musculoskelet Disord ; 11: 103, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20507640

RESUMO

BACKGROUND: Gel-type autologous chondrocyte (Chondron) implantations have been used for several years without using periosteum or membrane. This study involves evaluations of the clinical results of Chondron at many clinical centers at various time points during the postoperative patient follow-up. METHODS: Data from 98 patients with articular cartilage injury of the knee joint and who underwent Chondron implantation at ten Korean hospitals between January 2005 and November 2008, were included and were divided into two groups based on the patient follow-up period, i.e. 13~24-month follow-up and greater than 25-month follow-up. The telephone Knee Society Score obtained during telephone interviews with patients, was used as the evaluation tool. RESULTS: On the tKSS-A (telephone Knee Society Score-A), the score improved from 43.52 +/- 20.20 to 89.71 +/- 13.69 (P < 0.05), and on the tKSS-B (telephone Knee Society Score-B), the score improved from 50.66 +/- 20.05 to 89.38 +/- 15.76 (P < 0.05). The total improvement was from 94.18 +/- 31.43 to 179.10 +/- 24.69 (P < 0.05). CONCLUSION: Gel-type autologous chondrocyte implantation for chondral knee defects appears to be a safe and effective method for both decreasing pain and improving knee function.


Assuntos
Cartilagem Articular/cirurgia , Condrócitos/transplante , Traumatismos do Joelho/cirurgia , Articulação do Joelho/cirurgia , Transplante de Tecidos/métodos , Adolescente , Adulto , Idoso , Cartilagem Articular/citologia , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/citologia , Condrócitos/fisiologia , Feminino , Seguimentos , Humanos , Traumatismos do Joelho/diagnóstico por imagem , Traumatismos do Joelho/patologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Masculino , Pessoa de Meia-Idade , Radiografia , Estudos Retrospectivos , Transplante Autólogo/métodos , Resultado do Tratamento , Adulto Jovem
20.
J Food Biochem ; 44(1): e13110, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31792999

RESUMO

The purpose of the present study was to investigate whether several phytophenolic ingredients isolated from Maclura tricuspidata (Carr.) Bur fruits inhibit the activity of obesity-related enzymes including pancreatic lipase, α-amylase, ß-glucosidase, phosphodiesterase IV, alkaline phosphatase, and citrate synthase, and the compounds play as an inhibitor against the target enzymes in kinetic studies. The enzyme assays indicated that the fruit extract and its phytophenolic compounds inhibited significantly the enzymatic activity of the five target enzymes. The kinetic studies demonstrated that the inhibitory properties of p-hydroxybenzoic acid (4-HA), protocatechuic acid (PA), and isovanillic acid (IA) against pancreatic lipase, ß-glucosidase, citrate synthase, or alkaline phosphatase. Our results suggested that the compounds detected from Maclura tricuspidata (Carr.) Bur fruit extract may regulate carbohydrate/lipid/energy metabolism by obesity-related enzymes' inhibition. PRACTICAL APPLICATIONS: The obesity-related metabolizing enzymes affect (in)directly the metabolites absorption on carbohydrate/lipid/energy metabolism. Accordingly, it is an important strategy to treat obesity through target pathways and enzymes which include the reduction in energy intake and consumption. In our results, Maclura tricuspidata (Carr.) Bur fruit extract and its phytophenolic compounds inhibited significantly the enzymatic activity of the five target enzymes, in particular, 4-HA, PA, and IA have each specific inhibition type on pancreatic lipase, ß-glucosidase, citrate synthase, and alkaline phosphatase. Therefore, M. tricuspidata (Carr.) Bur fruit may be a strong candidate as a food material or therapeutic agent for obesity improvement.


Assuntos
Maclura , Frutas , Cinética , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA