Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Physiol Rev ; 100(1): 171-210, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31487233

RESUMO

Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Receptores Acoplados a Proteínas G/fisiologia
2.
Nature ; 595(7868): 560-564, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262176

RESUMO

The balance between bacterial colonization and its containment in the intestine is indispensable for the symbiotic relationship between humans and their bacteria. One component to maintain homeostasis at the mucosal surfaces is immunoglobulin A (IgA), the most abundant immunoglobulin in mammals1,2. Several studies have revealed important characteristics of poly-reactive IgA3,4, which is produced naturally without commensal bacteria. Considering the dynamic changes within the gut environment, however, it remains uncertain how the commensal-reactive IgA pool is shaped and how such IgA affects the microbial community. Here we show that acetate-one of the major gut microbial metabolites-not only increases the production of IgA in the colon, but also alters the capacity of the IgA pool to bind to specific microorganisms including Enterobacterales. Induction of commensal-reactive IgA and changes in the IgA repertoire by acetate were observed in mice monocolonized with Escherichia coli, which belongs to Enterobacterales, but not with the major commensal Bacteroides thetaiotaomicron, which suggests that acetate directs selective IgA binding to certain microorganisms. Mechanistically, acetate orchestrated the interactions between epithelial and immune cells, induced microbially stimulated CD4 T cells to support T-cell-dependent IgA production and, as a consequence, altered the localization of these bacteria within the colon. Collectively, we identified a role for gut microbial metabolites in the regulation of differential IgA production to maintain mucosal homeostasis.


Assuntos
Acetatos/farmacologia , Bactérias/imunologia , Microbioma Gastrointestinal/imunologia , Imunoglobulina A/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Colo/imunologia , Dieta , Ácidos Graxos Voláteis/metabolismo , Homeostase/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simbiose
3.
Nat Chem Biol ; 19(6): 778-789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36864192

RESUMO

Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.


Assuntos
Ecossistema , Mucinas , Mucinas/metabolismo , Polissacarídeos/metabolismo , Bactérias/metabolismo
4.
Nature ; 566(7742): 110-114, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675063

RESUMO

Small intestinal mononuclear cells that express CX3CR1 (CX3CR1+ cells) regulate immune responses1-5. CX3CR1+ cells take up luminal antigens by protruding their dendrites into the lumen1-4,6. However, it remains unclear how dendrite protrusion by CX3CR1+ cells is induced in the intestine. Here we show in mice that the bacterial metabolites pyruvic acid and lactic acid induce dendrite protrusion via GPR31 in CX3CR1+ cells. Mice that lack GPR31, which was highly and selectively expressed in intestinal CX3CR1+ cells, showed defective dendrite protrusions of CX3CR1+ cells in the small intestine. A methanol-soluble fraction of the small intestinal contents of specific-pathogen-free mice, but not germ-free mice, induced dendrite extension of intestinal CX3CR1+ cells in vitro. We purified a GPR31-activating fraction, and identified lactic acid. Both lactic acid and pyruvic acid induced dendrite extension of CX3CR1+ cells of wild-type mice, but not of Gpr31b-/- mice. Oral administration of lactate and pyruvate enhanced dendrite protrusion of CX3CR1+ cells in the small intestine of wild-type mice, but not in that of Gpr31b-/- mice. Furthermore, wild-type mice treated with lactate or pyruvate showed an enhanced immune response and high resistance to intestinal Salmonella infection. These findings demonstrate that lactate and pyruvate, which are produced in the intestinal lumen in a bacteria-dependent manner, contribute to enhanced immune responses by inducing GPR31-mediated dendrite protrusion of intestinal CX3CR1+ cells.


Assuntos
Bactérias/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Extensões da Superfície Celular/metabolismo , Intestino Delgado/citologia , Intestino Delgado/microbiologia , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Bactérias/imunologia , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/imunologia , Feminino , Células HEK293 , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Ácido Láctico/farmacologia , Lactobacillus helveticus/metabolismo , Masculino , Metanol , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ácido Pirúvico/farmacologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Salmonella/imunologia , Salmonella/metabolismo
5.
Bioorg Med Chem Lett ; 107: 129758, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641152

RESUMO

GPR41, a G protein-coupled receptor, serves as a sensor for short-chain fatty acids and plays a crucial role in regulating multiple physiological processes such as the maintenance of metabolic and immune homeostasis. Therefore, the modulation of GPR41 has garnered attention as a potential strategy for the treatment of various disorders. We conducted a structure-activity relationship study on a lead tetrahydroquinolone derivative bearing a 2-(trifluoromethoxy)benzene group that displayed antagonistic activity toward GPR41. Modification of the aryl group attached to the furan moiety revealed that derivatives containing di- or trifluorobenzene, instead of 2-(trifluoromethoxy)benzene, exhibited agonistic activity toward GPR41, comparable with the reported agonistic modulator AR420626. These results suggest that the aryl group plays a pivotal role in regulating the activity of compounds toward GPR41, providing valuable insights for the design of GPR41 modulators.


Assuntos
Receptores Acoplados a Proteínas G , Relação Estrutura-Atividade , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Humanos , Estrutura Molecular , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/síntese química , Relação Dose-Resposta a Droga , Receptores de Superfície Celular
6.
Glia ; 71(11): 2609-2622, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37470163

RESUMO

Resident microglia are important to maintain homeostasis in the central nervous system, which includes the retina. The retinal microglia become activated in numerous pathological conditions, but the molecular signatures of these changes are poorly understood. Here, using an approach based on FACS and RNA-seq, we show that microglial gene expression patterns gradually change during RGC degeneration induced by optic nerve injury. Most importantly, we found that the microglial cells strongly expressed Tnf and Il1α, both of which are known to induce neurotoxic reactive astrocytes, and were characterized by Gpr84high -expressing cells in a particular subpopulation. Moreover, ripasudil, a Rho kinase inhibitor, significantly blunted Gpr84 expression and cytokine induction in vitro and in vivo. Finally, GPR84-deficient mice prevented RGC loss in optic nerve-injured retina. These results reveal that Rho kinase-mediated GPR84 alteration strongly contribute to microglial activation and promote neurotoxicity, suggesting that Rho-ROCK and GPR84 signaling may be potential therapeutic targets to prevent the neurotoxic microglial phenotype induced by optic nerve damage, such as occurs in traumatic optic neuropathy and glaucoma.


Assuntos
Traumatismos do Nervo Óptico , Camundongos , Animais , Microglia/metabolismo , Células Ganglionares da Retina , Quinases Associadas a rho/metabolismo , Neuroglia/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Biochem Biophys Res Commun ; 597: 64-70, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124461

RESUMO

EphA2 is phosphorylated on serine 897 (S897) in response to growth factors such as epidermal growth factor (EGF) and on tyrosine 588 (Y588) in response to its ligand ephrinA1, causing different cellular responses. In this study, we show that the actin-binding protein Filamin A forms a complex with EphA2 and promotes its S897 phosphorylation and glioblastoma cell proliferation. Suppression of Filamin A expression by siRNAs inhibited glioblastoma cell proliferation induced by EGF stimulation or overexpression of EphA2. Knockdown of Filamin A inhibited EGF-induced S897 phosphorylation of EphA2, whereas it had little effect on ephrinA1-induced Y588 phosphorylation of EphA2. Furthermore, Filamin A expression affected the subcellular localization of EphA2. This study suggests that Filamin A selectively promotes EphA2 S897 phosphorylation and plays an important role in glioblastoma cell proliferation.

8.
Biochem Biophys Res Commun ; 621: 176-182, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35841764

RESUMO

We previously found that glucagon-like peptide 1 (GLP-1) secretion by co-administration of maltose plus an α-glucosidase inhibitor miglitol (maltose/miglitol) was suppressed by a GLUT2 inhibitor phloretin in mice. In addition, maltose/miglitol inhibited glucose-dependent insulinotropic polypeptide (GIP) secretion through a mechanism involving short chain fatty acids (SCFAs) produced by microbiome. However, it remains unknown whether phloretin suppresses GLP-1 secretion by modulating SCFAs. In this study, we examined the effect of phloretin on SCFA release from microbiome in vitro and in vivo. In Escherichia coli, acetate release into the medium was suppressed by phloretin, when cultured with maltose/miglitol. In mice, phloretin inhibited maltose/miglitol-induced SCFA increase in the portal vein. In addition, alpha methyl-d-glucose (αMDG), a poor substrate for GLUT2, significantly increased GLP-1 secretion when co-administered with phloridzin in mice, suggesting that GLUT2 is not essential for glucose/phloridzin-induced GLP-1 secretion. αMDG increased portal SCFA levels, thereby increasing GLP-1 secretion and suppressing GIP secretion in mice, suggesting that αMDG is metabolizable not for mammals, but for microbiota. In conclusion, phloretin is suggested to suppress maltose/miglitol-induced GLP-1 secretion via inhibiting SCFAs produced by microbiome.


Assuntos
Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon , Animais , Ácidos Graxos Voláteis , Polipeptídeo Inibidor Gástrico , Glucose , Maltose , Mamíferos , Camundongos , Floretina/farmacologia , Florizina , Receptores Acoplados a Proteínas G
9.
Proc Natl Acad Sci U S A ; 116(47): 23813-23821, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685604

RESUMO

Ketone bodies, including ß-hydroxybutyrate and acetoacetate, are important alternative energy sources during energy shortage. ß-Hydroxybutyrate also acts as a signaling molecule via specific G protein-coupled receptors (GPCRs); however, the specific associated GPCRs and physiological functions of acetoacetate remain unknown. Here we identified acetoacetate as an endogenous agonist for short-chain fatty acid (SCFA) receptor GPR43 by ligand screening in a heterologous expression system. Under ketogenic conditions, such as starvation and low-carbohydrate diets, plasma acetoacetate levels increased markedly, whereas plasma and cecal SCFA levels decreased dramatically, along with an altered gut microbiota composition. In addition, Gpr43-deficient mice showed reduced weight loss and suppressed plasma lipoprotein lipase activity during fasting and eucaloric ketogenic diet feeding. Moreover, Gpr43-deficient mice exhibited minimal weight decrease after intermittent fasting. These observations provide insight into the role of ketone bodies in energy metabolism under shifts in nutrition and may contribute to the development of preventive medicine via diet and foods.


Assuntos
Dieta Cetogênica , Corpos Cetônicos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Jejum , Células HEK293 , Humanos , Ligantes , Lipase Lipoproteica/sangue , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
10.
Chem Pharm Bull (Tokyo) ; 70(2): 155-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35110436

RESUMO

Exopolysaccharides (EPSs) occur widely in natural products made by bacteria, fungi and algae. Some EPSs have intriguing biological properties such as anticancer and immunomodulatory activities. Our group has recently found that EPSs generated from Leuconostoc mesenteroides ssp. mesenteroides strain NTM048 (NTM048 EPS) enhanced a production of mucosal immunoglobulin A (IgA) of mouse. Herein, we described the synthesis and evaluation of the tetrasaccharide fragments of NTM048 EPS to obtain information about the molecular mechanism responsible for the IgA-inducing activity.


Assuntos
Produtos Biológicos/síntese química , Produtos Biológicos/metabolismo , Leuconostoc/química , Polissacarídeos/biossíntese , Polissacarídeos/síntese química , Produtos Biológicos/química , Configuração de Carboidratos , Leuconostoc/metabolismo , Polissacarídeos/química
11.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628369

RESUMO

Due to the excess energy intake, which is a result of a high fat and high carbohydrate diet, dysfunction of energy balance leads to metabolic disorders such as obesity and type II diabetes mellitus (T2DM). Since obesity can be a risk factor for various diseases, including T2DM, hypertension, hyperlipidemia, and metabolic syndrome, novel prevention and treatment are expected. Moreover, host diseases linked to metabolic disorders are associated with changes in gut microbiota profile. Gut microbiota is affected by diet, and nutrients are used as substrates by gut microbiota for produced metabolites, such as short-chain and long-chain fatty acids, that may modulate host energy homeostasis. These free fatty acids are not only essential energy sources but also signaling molecules via G-protein coupled receptors (GPCRs). Some GPCRs are critical for metabolic functions, such as hormone secretion and immune function in various types of cells and tissues and contribute to energy homeostasis. The current studies have shown that GPCRs for gut microbial metabolites improved host energy homeostasis and systemic metabolic disorders. Here, we will review the association between diet, gut microbiota, and host energy homeostasis.


Assuntos
Dieta , Microbioma Gastrointestinal , Doenças Metabólicas , Receptores Acoplados a Proteínas G , Diabetes Mellitus Tipo 2/complicações , Microbioma Gastrointestinal/fisiologia , Homeostase , Humanos , Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
12.
Med Princ Pract ; 31(1): 39-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34818236

RESUMO

OBJECTIVE: G protein-coupled receptor 43 (GPR43), a receptor for short-chain fatty acids, plays a role in suppressing tumor growth; however, the detailed underlying mechanism needs to be comprehensively elucidated. In this study, we investigated the role of GPR43 in inhibiting tumor growth using ApcMin/+, a murine model of intestinal tumors. MATERIALS AND METHODS: Using GPR43-/- ApcMin/+ and GPR43+/- ApcMin/+ mice, the number of tumors was analyzed at the end of the experimental period. Immunohistochemistry, quantitative polymerase chain reaction, and Western blotting were performed to analyze cellular proliferation and proliferation-associated signal pathways. RESULTS: Our results revealed that GPR43 deficiency resulted in increased tumor numbers in ApcMin/+ mice. Ki67 was highly expressed in GPR43-/- mice (p > 0.05). Increased expression levels of proinflammatory cytokines, including interleukin-6 and tumor necrosis factor-α, and amino acid transporters were not observed in GPR43-deficient mice compared to GPR43-sufficient mice. Furthermore, GPR43-deficient tumor tissues showed enhanced mammalian target of rapamycin-mediated phosphorylated ribosomal protein S6 kinase beta-1 (p > 0.05) and phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (p > 0.05), but not Akt (protein kinase B) phosphorylation (p = 0.7088). CONCLUSION: Collectively, GPR43 affords protection against tumor growth at least partly through inhibition of the mammalian target of rapamycin complex 1 pathway.


Assuntos
Ácidos Graxos Voláteis , Neoplasias Intestinais , Receptores Acoplados a Proteínas G , Animais , Colo/patologia , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Mucosa Intestinal , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Mamíferos/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
Biochem Biophys Res Commun ; 557: 48-54, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33862459

RESUMO

Olfactory receptor 78 (Olfr78), which is also known as a receptor for short-chain fatty acids (SCFAs) produced via gut microbial fermentation from indigestible polysaccharides such as dietary fibers, is expressed in the enteroendocrine cells of the colon. However, the role of Olfr78 in gut hormone secretion remains unknown. Here, we aimed to investigate the function and mechanism of action of Olfr78 in vivo and in vitro. Toward this, we assessed the expression of Olfr78 in several tissues, affinity of Olfr78 to various monocarboxylates, and the secretion of anorexigenic gut hormone peptide YY (PYY) via Olfr78 using various molecular and biochemical techniques. Olfr78 was abundantly expressed in the colon and mouse enteroendocrine cell line STC-1 and showed specific affinity to SCFAs such as acetate and propionate, but not butyrate, in a monocarboxylate ligand screening assay using a heterologous expression system. Acetate promoted PYY secretion in STC-1 cells via Olfr78-protein kinase A signaling, whereas the effects were abolished by Olfr78 RNA interference. Colonic SCFAs production via oral administration of fructo-oligosaccharide significantly increased plasma PYY levels, whereas this effect was abolished in Olfr78-deficient and germ-free mice. These results suggested that the SCFA receptor Olfr78 is important for anti-obesity and anorexigenic effects of the gut microbiota and dietary fibers.


Assuntos
Anorexia/metabolismo , Anorexia/microbiologia , Ácidos Graxos Voláteis/farmacologia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Obesidade/microbiologia , Peptídeo YY/metabolismo , Receptores Odorantes/metabolismo , Animais , Anorexia/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Enteroendócrinas/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia
14.
Biochem Biophys Res Commun ; 539: 56-63, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421769

RESUMO

Ferroptosis is a form of cell death caused by iron-dependent lipid peroxidation. Cancer cells increase cystine uptake for the synthesis of glutathione (GSH), which is used by glutathione peroxidase 4 to reduce lipid peroxides. Here, we report that cystine deprivation in glioblastoma cells, but not inhibition of GSH synthesis by l-buthionine sulfoximine (BSO), induces ferroptosis. We found that cystine deprivation decreased the protein levels of ferritin heavy chain FTH1, whereas it was increased by BSO treatment. The lysosome inhibitor bafilomycin A1 or deletion of nuclear receptor coactivator 4 (NCOA4) inhibited cystine deprivation-induced decrease in FTH1 protein levels and cell death. In addition, cystine deprivation induced microtubule-associated protein light chain 3 (LC3)-II protein accumulation, suggesting that cystine deprivation induces ferritinophagy. BSO causes cell death when glioblastoma cells are treated with iron inducers, ferrous ammonium sulfate or hemin. On the other hand, cystine deprivation-induced degradation of FTH1 and cell death required glutamine. This study suggests that ferritinophagy, in addition to GSH depletion, plays an important role in cystine deprivation-induced ferroptosis in glioblastoma cells.


Assuntos
Neoplasias Encefálicas/patologia , Cistina/deficiência , Ferritinas/metabolismo , Glioblastoma/patologia , Glutationa/metabolismo , Ferro/metabolismo , Oxirredutases/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Butionina Sulfoximina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cistina/metabolismo , Ferritinas/genética , Ferroptose , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Peroxidação de Lipídeos , Oxirredutases/genética
15.
Int Immunol ; 32(4): 243-258, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31858119

RESUMO

Secretory immunoglobulin A (SIgA), the most abundant antibody isotype in the body, maintains a mutual relationship with commensal bacteria and acts as a primary barrier at the mucosal surface. Colonization by commensal bacteria induces an IgA response, at least partly through a T-cell-independent process. However, the mechanism underlying the commensal-bacteria-induced T-cell-independent IgA response has yet to be fully clarified. Here, we show that commensal-bacteria-derived butyrate promotes T-cell-independent IgA class switching recombination (CSR) in the mouse colon. Notably, the butyrate concentration in human stools correlated positively with the amount of IgA. Butyrate up-regulated the production of transforming growth factor ß1 and all-trans retinoic acid by CD103+CD11b+ dendritic cells, both of which are critical for T-cell-independent IgA CSR. This effect was mediated by G-protein-coupled receptor 41 (GPR41/FFA3) and GPR109a/HCA2, and the inhibition of histone deacetylase. The butyrate-induced IgA response reinforced the colonic barrier function, preventing systemic bacterial dissemination under inflammatory conditions. These observations demonstrate that commensal-bacteria-derived butyrate contributes to the maintenance of the gut immune homeostasis by facilitating the T-cell-independent IgA response in the colon.


Assuntos
Butiratos/farmacologia , Colo/efeitos dos fármacos , Imunoglobulina A/imunologia , Linfócitos T/efeitos dos fármacos , Animais , Células Cultivadas , Técnicas de Cocultura , Colo/imunologia , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Switching de Imunoglobulina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Linfócitos T/imunologia
16.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639136

RESUMO

BACKGROUND: α-cyclodextrin (α-CD) is one of the dietary fibers that may have a beneficial effect on cholesterol and/or glucose metabolism, but its efficacy and mode of action remain unclear. METHODS: In the present study, we examined the anti-hyperglycemic effect of α-CD after oral loading of glucose and liquid meal in mice. RESULTS: Administration of 2 g/kg α-CD suppressed hyperglycemia after glucose loading, which was associated with increased glucagon-like peptide 1 (GLP-1) secretion and enhanced hepatic glucose sequestration. By contrast, 1 g/kg α-CD similarly suppressed hyperglycemia, but without increasing secretions of GLP-1 and insulin. Furthermore, oral α-CD administration disrupts lipid micelle formation through its inclusion of lecithin in the gut luminal fluid. Importantly, prior inclusion of α-CD with lecithin in vitro nullified the anti-hyperglycemic effect of α-CD in vivo, which was associated with increased intestinal mRNA expressions of SREBP2-target genes (Ldlr, Hmgcr, Pcsk9, and Srebp2). CONCLUSIONS: α-CD elicits its anti-hyperglycemic effect after glucose loading by inducing lecithin inclusion in the gut lumen and activating SREBP2, which is known to induce cholecystokinin secretion to suppress hepatic glucose production via a gut/brain/liver axis.


Assuntos
Trato Gastrointestinal/metabolismo , Hiperglicemia/prevenção & controle , Lecitinas/metabolismo , Período Pós-Prandial , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , alfa-Ciclodextrinas/farmacologia , Animais , Trato Gastrointestinal/efeitos dos fármacos , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
17.
FASEB J ; 33(3): 3167-3179, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30399323

RESUMO

Oleoylethanolamide (OEA), a fatty acid ethanolamide (FAE), is a lipid mediator that controls food intake and lipid metabolism. Accumulating data imply the importance of intestinal OEA in controlling satiety in addition to gastrointestinal peptide hormones. Although the biochemical pathway of FAE production has been illustrated, the enzymes responsible for the cleavage of OEA from its precursor N-acyl-phosphatidylethanolamine (NAPE) must be identified among reported candidates in the gut. In this study, we assessed the involvement of NAPE-specific phospholipase D (NAPE-PLD), which can directly release FAEs from NAPE, in intestinal OEA synthesis and lipid metabolism. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPER-associated protein 9 (Cas9)-mediated deletion of the NAPE-PLD gene in intestinal epithelial-like Caco-2 cells reduced OEA levels, regardless of their differentiation states. Transcriptome analysis revealed that deletion of NAPE-PLD activates a transcriptional program for nutrient transportation, including lipids and lipoproteins, and inactivates cell-cycle or mitosis-related genes in Caco-2 cells. In addition, the basolateral secretion of lipoproteins was increased in NAPE-PLD-deleted cells although lipoprotein size was not affected. By contrast, cellular lipid levels were reduced in NAPE-PLD-deleted cells. Overall, these results indicate that NAPE-PLD plays important roles in OEA synthesis and fat absorption by regulating lipoprotein production in the intestinal epithelial cells.-Igarashi, M., Watanabe, K., Tsuduki, T., Kimura, I., Kubota, N. NAPE-PLD controls OEA synthesis and fat absorption by regulating lipoprotein synthesis in an in vitro model of intestinal epithelial cells.


Assuntos
Gorduras na Dieta/metabolismo , Endocanabinoides/biossíntese , Mucosa Intestinal/metabolismo , Ácidos Oleicos/biossíntese , Fosfolipase D/metabolismo , Antígenos CD36/metabolismo , Células CACO-2 , Diferenciação Celular , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Mucosa Intestinal/citologia , Metabolismo dos Lipídeos , Lipoproteínas/biossíntese , Modelos Biológicos , Fosfolipase D/deficiência , Fosfolipase D/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Nephrol Dial Transplant ; 35(9): 1501-1517, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32535631

RESUMO

BACKGROUND: Chronic kidney disease (CKD) leads to insulin resistance (IR) and sarcopenia, which are associated with a high mortality risk in CKD patients; however, their pathophysiologies remain unclear. Recently, alterations in gut microbiota have been reported to be associated with CKD. We aimed to determine whether uremic dysbiosis contributes to CKD-associated IR and sarcopenia. METHODS: CKD was induced in specific pathogen-free mice via an adenine-containing diet; control animals were fed a normal diet. Fecal microbiota transplantation (FMT) was performed by oral gavage in healthy germ-free mice using cecal bacterial samples obtained from either control mice (control-FMT) or CKD mice (CKD-FMT). Vehicle mice were gavaged with sterile phosphate-buffered saline. Two weeks after inoculation, mice phenotypes, including IR and sarcopenia, were evaluated. RESULTS: IR and sarcopenia were evident in CKD mice compared with control mice. These features were reproduced in CKD-FMT mice compared with control-FMT and vehicle mice with attenuated insulin-induced signal transduction and mitochondrial dysfunction in skeletal muscles. Intestinal tight junction protein expression and adipocyte sizes were lower in CKD-FMT mice than in control-FMT mice. Furthermore, CKD-FMT mice showed systemic microinflammation, increased concentrations of serum uremic solutes, fecal bacterial fermentation products and elevated lipid content in skeletal muscle. The differences in gut microbiota between CKD and control mice were mostly consistent between CKD-FMT and control-FMT mice. CONCLUSIONS: Uremic dysbiosis induces IR and sarcopenia, leaky gut and lipodystrophy.


Assuntos
Bactérias/isolamento & purificação , Disbiose/complicações , Microbioma Gastrointestinal , Resistência à Insulina , Insuficiência Renal Crônica/fisiopatologia , Sarcopenia/etiologia , Uremia/complicações , Animais , Disbiose/microbiologia , Transplante de Microbiota Fecal , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos ICR , Sarcopenia/patologia , Sarcopenia/terapia
19.
FASEB J ; 32(1): 304-318, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904023

RESUMO

Among dietary fatty acids with immunologic effects, ω-3 polyunsaturated fatty acids, such as α-linolenic acid (ALA), have been considered as factors that contribute to the differentiation of M2-type macrophages (M2 macrophages). In this study, we examined the effect of ALA and its gut lactic acid bacteria metabolites 13-hydroxy-9(Z),15(Z)-octadecadienoic acid (13-OH) and 13-oxo-9(Z),15(Z)-octadecadienoic acid (13-oxo) on the differentiation of M2 macrophages from bone marrow-derived cells (BMDCs) and investigated the underlying mechanisms. BMDCs were stimulated with ALA, 13-OH, or 13-oxo in the presence of IL-4 or IL-13 for 24 h, and significant increases in M2 macrophage markers CD206 and Arginase-1 (Arg1) were observed. In addition, M2 macrophage phenotypes were less prevalent following cotreatment with GPCR40 antagonists or inhibitors of PLC-ß and MEK under these conditions, suggesting that GPCR40 signaling is involved in the regulation of M2 macrophage differentiation. In further experiments, remarkable M2 macrophage accumulation was observed in the lamina propria of the small intestine of C57BL/6 mice after intragastric treatments with ALA, 13-OH, or 13-oxo at 1 g/kg of body weight per day for 3 d. These findings suggest a novel mechanism of M2 macrophage differentiation involving fatty acids from gut lactic acid bacteria and GPCR40 signaling.-Ohue-Kitano, R., Yasuoka, Y., Goto, T., Kitamura, N., Park, S.-B., Kishino, S., Kimura, I., Kasubuchi, M., Takahashi, H., Li, Y., Yeh, Y.-S., Jheng, H.-F., Iwase, M., Tanaka, M., Masuda, S., Inoue, T., Yamakage, H., Kusakabe, T., Tani, F., Shimatsu, A., Takahashi, N., Ogawa, J., Satoh-Asahara, N., Kawada, T. α-Linolenic acid-derived metabolites from gut lactic acid bacteria induce differentiation of anti-inflammatory M2 macrophages through G protein-coupled receptor 40.


Assuntos
Lactobacillales/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido alfa-Linolênico/metabolismo , Animais , Diferenciação Celular , Microbioma Gastrointestinal , Células HEK293 , Humanos , Imunidade Inata , Interleucina-4/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , PPAR gama/metabolismo
20.
J Immunol ; 199(10): 3516-3524, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021375

RESUMO

Short-chain fatty acids (SCFAs), the end products of dietary fiber, influence the immune system. Moreover, during pregnancy the maternal microbiome has a great impact on the development of the offspring's immune system. However, the exact mechanisms by which maternal SCFAs during pregnancy and lactation influence the immune system of offspring are not fully understood. We investigated the molecular mechanisms underlying regulatory T cell (Treg) differentiation in offspring regulated by a maternal high fiber diet (HFD). Plasma levels of SCFAs in offspring from HFD-fed mice were higher than in those from no fiber diet-fed mice. Consequently, the offspring from HFD-fed mice had higher frequencies of thymic Treg (tTreg) and peripheral Tregs We found that the offspring of HFD-fed mice exhibited higher autoimmune regulator (Aire) expression, a transcription factor expressed in the thymic microenvironment, suggesting SCFAs promote tTreg differentiation through increased Aire expression. Notably, the receptor for butyrate, G protein-coupled receptor 41 (GPR41), is highly expressed in the thymic microenvironment and Aire expression is not increased by stimulation with butyrate in GPR41-deficient mice. Our studies highlight the significance of SCFAs produced by a maternal HFD for Treg differentiation in the thymus of offspring. Given that Aire expression is associated with the induction of tTregs, the maternal microbiome influences Treg differentiation in the thymus of offspring through GPR41-mediated Aire expression.


Assuntos
Exposição Materna/efeitos adversos , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T Reguladores/imunologia , Timo/imunologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Fibras na Dieta , Ácidos Graxos Voláteis/sangue , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/genética , Proteína AIRE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA