Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656438

RESUMO

Common G0W0 implementations rely on numerical or analytical frequency integration to determine the G0W0 self-energy, which results in a variety of practical complications. Recently, we have demonstrated an exact connection between the G0W0 approximation and equation-of-motion quantum chemistry approaches [J. Tölle and G. Kin-Lic Chan, J. Chem. Phys. 158, 124123 (2023)]. Based on this connection, we propose a new method to determine G0W0 quasiparticle energies, which completely avoids frequency integration and its associated problems. To achieve this, we make use of an auxiliary boson (AB) expansion. We name the new approach AB-G0W0 and demonstrate its practical applicability in a range of molecular problems.

2.
J Chem Phys ; 158(12): 124123, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003772

RESUMO

We describe the relationship between the GW approximation and various equation-of-motion (EOM) coupled-cluster (CC) theories. We demonstrate the exact equivalence of the G0W0 approximation and the propagator theory for an electron-boson problem in a particular excitation basis. From there, we establish equivalence within the quasi-boson picture to the IP+EA-EOM unitary CC propagator. We analyze the incomplete description of screening provided by the standard similarity-transformed IP+EA-EOM-CC and the recently introduced G0W0 Tamm-Dancoff approximation. We further consider the approximate decoupling of IP and EA sectors in EOM-CC treatments and devise the analogous particle-hole decoupling approach for the G0W0 approximation. Finally, we numerically demonstrate the exact relationships and magnitude of the approximations in the calculations of a set of molecular ionization potentials and electron affinities.

3.
J Chem Phys ; 158(13): 134105, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031152

RESUMO

The practical description of disordered chemical reactions, where the reactions involve multiple species at multiple sites, is presently a challenge using correlated electronic structure methods due to their high computational cost and steep scaling. Here, we describe the gradient theory of multi-fragment density matrix embedding theory, which potentially provides a minimal computational framework to model such processes at the correlated electron level. We present the derivation and implementation of the gradient theory, its validation on model systems and chemical reactions using density matrix embedding, and its application to a molecular dynamics simulation of proton transport in a small water cluster, a simple example of multi-site reaction dynamics.

4.
Chem Rev ; 120(22): 12685-12717, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33090772

RESUMO

As we begin to reach the limits of classical computing, quantum computing has emerged as a technology that has captured the imagination of the scientific world. While for many years, the ability to execute quantum algorithms was only a theoretical possibility, recent advances in hardware mean that quantum computing devices now exist that can carry out quantum computation on a limited scale. Thus, it is now a real possibility, and of central importance at this time, to assess the potential impact of quantum computers on real problems of interest. One of the earliest and most compelling applications for quantum computers is Feynman's idea of simulating quantum systems with many degrees of freedom. Such systems are found across chemistry, physics, and materials science. The particular way in which quantum computing extends classical computing means that one cannot expect arbitrary simulations to be sped up by a quantum computer, thus one must carefully identify areas where quantum advantage may be achieved. In this review, we briefly describe central problems in chemistry and materials science, in areas of electronic structure, quantum statistical mechanics, and quantum dynamics that are of potential interest for solution on a quantum computer. We then take a detailed snapshot of current progress in quantum algorithms for ground-state, dynamics, and thermal-state simulation and analyze their strengths and weaknesses for future developments.

5.
J Chem Phys ; 155(4): 044103, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34340387

RESUMO

We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137-6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.

6.
J Chem Phys ; 152(10): 104107, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171214

RESUMO

We present a strategy to construct guiding distribution functions (GDFs) based on variance minimization. Auxiliary dynamics via GDFs mitigates the exponential growth of variance as a function of bias in Monte Carlo estimators of large deviation functions. The variance minimization technique exploits the exact properties of eigenstates of the tilted operator that defines the biased dynamics in the nonequilibrium system. We demonstrate our techniques in two classes of problems. In the continuum, we show that GDFs can be optimized to study the interacting driven diffusive systems where the efficiency is systematically improved by incorporating higher correlations into the GDF. On the lattice, we use a correlator product state ansatz to study the 1D weakly asymmetric simple exclusion process. We show that with modest resources, we can capture the features of the susceptibility in large systems that mark the phase transition from uniform transport to a traveling wave state. Our work extends the repertoire of tools available to study nonequilibrium properties in realistic systems.

7.
J Chem Phys ; 152(22): 224104, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32534540

RESUMO

We discuss the theory and implementation of the finite temperature coupled cluster singles and doubles (FT-CCSD) method including the equations necessary for an efficient implementation of response properties. Numerical aspects of the method including the truncation of the orbital space and integration of the amplitude equations are tested on some simple systems, and we provide some guidelines for applying the method in practice. The method is then applied to the 1D Hubbard model, the uniform electron gas (UEG) at warm, dense conditions, and some simple materials. The performance of model systems at high temperatures is encouraging: for the one-dimensional Hubbard model, FT-CCSD provides a qualitatively accurate description of finite-temperature correlation effects even at U = 8, and it allows for the computation of systematically improvable exchange-correlation energies of the warm, dense UEG over a wide range of conditions. We highlight the obstacles that remain in using the method for realistic ab initio calculations on materials.

9.
J Chem Theory Comput ; 18(2): 851-864, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35084855

RESUMO

Density matrix embedding theory (DMET) formally requires the matching of density matrix blocks obtained from high-level and low-level theories, but this is sometimes not achievable in practical calculations. In such a case, the global band gap of the low-level theory vanishes, and this can require additional numerical considerations. We find that both the violation of the exact matching condition and the vanishing low-level gap are related to the assumption that the high-level density matrix blocks are noninteracting pure-state v-representable (NI-PS-V), which assumes that the low-level density matrix is constructed following the Aufbau principle. To relax the NI-PS-V condition, we develop an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

10.
J Phys Chem Lett ; 10(21): 6664-6671, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31532691

RESUMO

Iron-sulfur complexes play an important role in biological processes such as metabolic electron transport. A detailed understanding of the mechanism of long-range electron transfer requires knowledge of the electronic structure of the complexes, which has traditionally been challenging to obtain, either by theory or by experiment, but the situation has begun to change with advances in quantum chemical methods and intense free electron laser light sources. We compute the spectra for stimulated X-ray Raman spectroscopy (SXRS) and absorption spectroscopy of homovalent and mixed-valence [2Fe-2S] complexes, using the ab initio density matrix renormalization group algorithm. The simulated spectra show clear signatures of the theoretically predicted dense low-lying excited states within the d-d manifold. Furthermore, the difference in spectral intensity between the absorption-active and Raman-active states provides a potential mechanism to selectively excite states by a proper tuning of the excitation pump, to access the electronic dynamics within this manifold.

11.
J Chem Theory Comput ; 14(10): 5027-5039, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30148629

RESUMO

We implement and apply time-dependent density matrix renormalization group (TD-DMRG) algorithms at zero and finite temperature to compute the linear absorption and fluorescence spectra of molecular aggregates. Our implementation is within a matrix product state/operator framework with an explicit treatment of the excitonic and vibrational degrees of freedom, and it uses the locality of the Hamiltonian in the zero-exciton space to improve the efficiency and accuracy of the calculations. We demonstrate the power of the method by calculations on several molecular aggregate models, comparing our results against those from multilayer multiconfiguration time-dependent Hartree and n-particle approximations. We find that TD-DMRG provides an accurate and efficient route to calculate the spectrum of molecular aggregates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA