RESUMO
The human gut microbiota can restrict the growth of pathogens to prevent them from colonizing the intestine ('colonization resistance'). However, antibiotic treatment can kill members of the gut microbiota ('gut commensals') and reduce competition for nutrients, making these nutrients available to support the growth of pathogens. This disturbance can lead to the growth and expansion of pathogens within the intestine (including antibiotic-resistant pathogens), where these pathogens can exploit the absence of competitors and the nutrient-enriched gut environment. In this review, we discuss nutrient competition between the gut microbiota and pathogens. We also provide an overview of how nutrient competition can be harnessed to support the design of next-generation microbiome therapeutics to restrict the growth of pathogens and prevent the development of invasive infections.
Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Antibacterianos/uso terapêutico , NutrientesRESUMO
The intestine is the primary colonisation site for carbapenem-resistant Enterobacteriaceae (CRE) and serves as a reservoir of CRE that cause invasive infections (e.g. bloodstream infections). Broad-spectrum antibiotics disrupt colonisation resistance mediated by the gut microbiota, promoting the expansion of CRE within the intestine. Here, we show that antibiotic-induced reduction of gut microbial populations leads to an enrichment of nutrients and depletion of inhibitory metabolites, which enhances CRE growth. Antibiotics decrease the abundance of gut commensals (including Bifidobacteriaceae and Bacteroidales) in ex vivo cultures of human faecal microbiota; this is accompanied by depletion of microbial metabolites and enrichment of nutrients. We measure the nutrient utilisation abilities, nutrient preferences, and metabolite inhibition susceptibilities of several CRE strains. We find that CRE can use the nutrients (enriched after antibiotic treatment) as carbon and nitrogen sources for growth. These nutrients also increase in faeces from antibiotic-treated mice and decrease following intestinal colonisation with carbapenem-resistant Escherichia coli. Furthermore, certain microbial metabolites (depleted upon antibiotic treatment) inhibit CRE growth. Our results show that killing gut commensals with antibiotics facilitates CRE colonisation by enriching nutrients and depleting inhibitory microbial metabolites.