Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chembiochem ; 24(7): e202200721, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642698

RESUMO

The use of light to control protein function is a critical tool in chemical biology. Here we describe the addition of a photocaged histidine to the genetic code. This unnatural amino acid becomes histidine upon exposure to light and allows for the optical control of enzymes that utilize active-site histidine residues. We demonstrate light-induced activation of a blue fluorescent protein and a chloramphenicol transferase. Further, we genetically encoded photocaged histidine in mammalian cells. We then used this approach in live cells for optical control of firefly luciferase and, Renilla luciferase. This tool should have utility in manipulating and controlling a wide range of biological processes.


Assuntos
Aminoácidos , Histidina , Animais , Histidina/genética , Aminoácidos/química , Proteínas/metabolismo , Luciferases de Renilla/genética , Código Genético , Mamíferos/genética , Mamíferos/metabolismo
2.
Tetrahedron Lett ; 1172023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36936473

RESUMO

KLS-13019 is a structural analogue of cannabidiol, that shows improved bioavailability and potency in both preventing and reversing paclitaxel-induced neurotoxicity in vitro and in vivo. KLS-13019 was selected as a development candidate and attention was turned to development of a scalable synthesis. The original synthesis of KLS-13019 was not efficient, regioselective, or high yielding. Two new syntheses are reported that make use of the palladium catalyzed cross couplings to a chemically advanced intermediate 5, dramatically shortening (3-4 steps) and improving the overall yield. In addition, a convenient one pot Boc-cleavage and acetylation procedure is described to avoid impurities generated from a step-wise process.

3.
Ann Intern Med ; 175(12): 1666-1674, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343348

RESUMO

BACKGROUND: Parkinson disease (PD) is associated with α-synuclein (αS) aggregation within enteric neurons. ENT-01 inhibits the formation of αS aggregates and improved constipation in an open-label study in patients with PD. OBJECTIVE: To evaluate the safety and efficacy of oral ENT-01 for constipation and neurologic symptoms in patients with PD and constipation. DESIGN: Randomized, placebo-controlled phase 2b study. (ClinicalTrials.gov: NCT03781791). SETTING: Outpatient. PATIENTS: 150 patients with PD and constipation. INTERVENTION: ENT-01 or placebo daily for up to 25 days. After baseline assessment of constipation severity, daily dosing was escalated to the prokinetic dose, the maximum dose (250 mg), or the tolerability limit, followed by a washout period. MEASUREMENTS: The primary efficacy end point was the number of complete spontaneous bowel movements (CSBMs) per week. Neurologic end points included dementia (assessed using the Mini-Mental State Examination [MMSE]) and psychosis (assessed using the Scale for the Assessment of Positive Symptoms adapted for PD [SAPS-PD]). RESULTS: The weekly CSBM rate increased from 0.7 to 3.2 in the ENT-01 group versus 0.7 to 1.2 in the placebo group (P < 0.001). Improvement in secondary end points included SBMs (P = 0.002), stool consistency (P < 0.001), ease of passage (P = 0.006), and laxative use (P = 0.041). In patients with dementia, MMSE scores improved by 3.4 points 6 weeks after treatment in the ENT-01 group (n = 14) versus 2.0 points in the placebo group (n = 14). Among patients with psychosis, SAPS-PD scores improved from 6.5 to 1.7 six weeks after treatment in the ENT-01 group (n = 5) and from 6.3 to 4.4 in the placebo group (n = 6). ENT-01 was well tolerated, with no deaths or drug-related serious adverse events. Adverse events were predominantly gastrointestinal, including nausea (34.4% [ENT-01] vs. 5.3% [placebo]; P < 0.001) and diarrhea (19.4% [ENT-01] vs. 5.3% [placebo]; P = 0.016). LIMITATION: Longer treatment periods need to be investigated in future studies. CONCLUSION: ENT-01 was safe and significantly improved constipation. PRIMARY FUNDING SOURCE: Enterin, Inc.


Assuntos
Demência , Doença de Parkinson , Humanos , Resultado do Tratamento , Constipação Intestinal , Defecação , Método Duplo-Cego
4.
Phys Rev Lett ; 122(8): 081302, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932619

RESUMO

I apply recently proposed "swampland" conjectures to eternal inflation in single-scalar field theories. Eternal inflation is a phase of infinite self-reproduction of a quasi-de Sitter universe which has been argued to be a generic consequence of cosmological inflation. The originally proposed de Sitter swampland conjectures were shown by Matsui and Takahashi, and by Dimopoulos, to be generically incompatible with eternal inflation. However, the more recently proposed "refined" swampland conjecture imposes a slightly weaker criterion on the scalar field potential in inflation, and is consistent with the existence of a tachyonic instability. In this Letter, I show that eternal inflation is marginally consistent with the refined de Sitter swampland conjecture. Thus, if the refined conjecture is correct, the existence of a landscape-based "multiverse" in string theory is not incompatible with a self-consistent ultraviolet completion, with significant consequences for model building in string theory.

5.
Proc Natl Acad Sci U S A ; 112(16): 5111-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25820174

RESUMO

Silencing of interleukin-32 (IL-32) in a differentiated human promonocytic cell line impairs killing of Mycobacterium tuberculosis (MTB) but the role of IL-32 in vivo against MTB remains unknown. To study the effects of IL-32 in vivo, a transgenic mouse was generated in which the human IL-32γ gene is expressed using the surfactant protein C promoter (SPC-IL-32γTg). Wild-type and SPC-IL-32γTg mice were infected with a low-dose aerosol of a hypervirulent strain of MTB (W-Beijing HN878). At 30 and 60 d after infection, the transgenic mice had 66% and 85% fewer MTB in the lungs and 49% and 68% fewer MTB in the spleens, respectively; the transgenic mice also exhibited greater survival. Increased numbers of host-protective innate and adaptive immune cells were present in SPC-IL-32γTg mice, including tumor necrosis factor-alpha (TNFα) positive lung macrophages and dendritic cells, and IFN-gamma (IFNγ) and TNFα positive CD4(+) and CD8(+) T cells in the lungs and mediastinal lymph nodes. Alveolar macrophages from transgenic mice infected with MTB ex vivo had reduced bacterial burden and increased colocalization of green fluorescent protein-labeled MTB with lysosomes. Furthermore, mouse macrophages made to express IL-32γ but not the splice variant IL-32ß were better able to limit MTB growth than macrophages capable of producing both. The lungs of patients with tuberculosis showed increased IL-32 expression, particularly in macrophages of granulomas and airway epithelial cells but also B cells and T cells. We conclude that IL-32γ enhances host immunity to MTB.


Assuntos
Interleucinas/metabolismo , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/prevenção & controle , Imunidade Adaptativa/imunologia , Animais , Antígenos Ly/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Humanos , Imunidade Inata/imunologia , Interferon gama , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/patologia , Macrófagos Alveolares/imunologia , Camundongos Transgênicos , Mutação/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Sítios de Splice de RNA/genética , Linfócitos T Reguladores/imunologia , Transfecção , Transgenes , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Virulência/imunologia
6.
World J Microbiol Biotechnol ; 33(4): 66, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260195

RESUMO

Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.


Assuntos
Antibacterianos/biossíntese , Engenharia Genética/métodos , Nucleosídeos/biossíntese , Streptomyces/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Vias Biossintéticas , Descoberta de Drogas , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Família Multigênica , Nucleosídeos/farmacologia , Streptomyces/metabolismo
7.
Bioorg Med Chem Lett ; 26(23): 5819-5824, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793566

RESUMO

Based on our previous identification of a disubstituted aminothiazole termed HBF-0079 with promising selective toxicity for HCC-derived cell lines versus non-HCC liver lines, a series of tri-substituted aminothiazole derivatives were prepared and evaluated. This work resulted in the discovery of isopropyl 4-(pyrazin-2-yl)-2-(pyrimidin-2-ylamino)thiazole-5-carboxylate, 14, which displayed EC50 value of 0.11µM and more than 450times of selectivity, and its methyl carbonate prodrug 24 with improved solubility in organic solvents. Furthermore, 14, was shown to reduce the proliferation of several liver cancer cells derived directly from patients.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Tiazóis/química , Tiazóis/farmacologia , Aminação , Carbonatos/química , Carbonatos/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia
8.
Respirology ; 21(5): 951-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27012592

RESUMO

BACKGROUND AND OBJECTIVE: With the worldwide emergence of highly drug-resistant tuberculosis (TB), novel agents that have direct antimycobacterial effects or that enhance host immunity are urgently needed. Curcumin is a polyphenol responsible for the bright yellow-orange colour of turmeric, a spice derived from the root of the perennial herb Curcuma longa. Curcumin is a potent inducer of apoptosis-an effector mechanism used by macrophages to kill intracellular Mycobacterium tuberculosis (MTB). METHODS: An in vitro human macrophage infection model was used to determine the effects of curcumin on MTB survival. RESULTS: We found that curcumin enhanced the clearance of MTB in differentiated THP-1 human monocytes and in primary human alveolar macrophages. We also found that curcumin was an inducer of caspase-3-dependent apoptosis and autophagy. Curcumin mediated these anti-MTB cellular functions, in part, via inhibition of nuclear factor-kappa B (NFκB) activation. CONCLUSION: Curcumin protects against MTB infection in human macrophages. The host-protective role of curcumin against MTB in macrophages needs confirmation in an animal model; if validated, the immunomodulatory anti-TB effects of curcumin would be less prone to drug resistance development.


Assuntos
Apoptose , Curcumina/farmacologia , Macrófagos Alveolares , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Humanos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Modelos Imunológicos , Mycobacterium tuberculosis/fisiologia , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Tuberculose/imunologia , Tuberculose/terapia
9.
BMC Microbiol ; 15: 39, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25887904

RESUMO

BACKGROUND: Macrophages are the primary effector cells responsible for killing Mycobacterium tuberculosis (MTB) through various mechanisms, including apoptosis. However, MTB can evade host immunity to create a favorable environment for intracellular replication. MTB-infected human macrophages produce interleukin-32 (IL-32). IL-32 is a pro-inflammatory cytokine and has several isoforms. We previously found that IL-32γ reduced the burden of MTB in human macrophages, in part, through the induction of caspase-3-dependent apoptosis. However, based on our previous studies, we hypothesized that caspase-3-independent death pathways may also mediate IL-32 control of MTB infection. Herein, we assessed the potential roles of cathepsin-mediated apoptosis, caspase-1-mediated pyroptosis, and apoptosis-inducing factor (AIF) in mediating IL-32γ control of MTB infection in THP-1 cells. RESULTS: Differentiated human THP-1 macrophages were infected with MTB H37Rv alone or in the presence of specific inhibitors to caspase-1, cathepsin B/D, or cathepsin L for up to four days, after which TUNEL-positive cells were quantified; in addition, MTB was quantified by culture as well as by the percentage of THP-1 cells that were infected with green fluorescent protein (GFP)-labeled MTB as determined by microscopy. AIF expression was inhibited using siRNA technology. Inhibition of cathepsin B/D, cathepsin L, or caspase-1 activity significantly abrogated the IL-32γ-mediated reduction in the number of intracellular MTB and of the percentage of GFP-MTB-infected macrophages. Furthermore, inhibition of caspase-1, cathepsin B/D, or cathepsin L in the absence of exogenous IL-32γ resulted in a trend toward an increased proportion of MTB-infected THP-1 cells. Inhibition of AIF activity in the absence of exogenous IL-32γ also increased intracellular burden of MTB. However, since IL-32γ did not induce AIF and because the relative increases in MTB with inhibition of AIF were similar in the presence or absence of IL-32γ, our results indicate that AIF does not mediate the host-protective effect of IL-32γ against MTB. CONCLUSIONS: The anti-MTB effects of IL-32γ are mediated through classical caspase-3-dependent apoptosis as well as caspase-3-independent apoptosis.


Assuntos
Apoptose , Interleucinas/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/imunologia , Carga Bacteriana , Linhagem Celular , Citoplasma/microbiologia , Humanos
10.
Respirology ; 20(4): 556-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808744

RESUMO

The geographic overlap between the prevalence of cigarette smoke (CS) exposure and tuberculosis (TB) in the world is striking. In recent years, relatively large number of studies has linked cigarette or biomass fuel smoke exposure and various aspects of TB. Our goals are to summarize the significance of the known published studies, graphically represent reports that quantified the association and discuss their potential limitations. PubMed searches were performed using the key words 'tuberculosis' with 'cigarette', 'tobacco', 'smoke' or 'biomass fuel smoke.' The references of relevant articles were examined for additional pertinent papers. A large number of mostly case-control and cross-sectional studies significantly associate both direct and second-hand smoke exposure with tuberculous infection, active TB, and/or more severe and lethal TB. Fewer link biomass fuel smoke exposure and TB. While a number of studies interpreted the association with multivariate analysis, other confounders are often not accounted for in these analyses. It is also important to emphasize that these retrospective studies can only show an association and not any causal link. We further explored the possibility that even if CS exposure is a risk factor for TB, several mechanisms may be responsible. Numerous studies associate cigarette and biomass smoke exposure with TB but the mechanism(s) remains largely unknown. While the associative link of these two health maladies is well established, more definitive, mechanistic studies are needed to cement the effect of smoke exposure on TB pathogenesis and to utilize this knowledge in empowering public health policies.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Tuberculose Latente/epidemiologia , Fumaça , Fumar/epidemiologia , Tuberculose Pulmonar/epidemiologia , Biomassa , Fontes Geradoras de Energia/estatística & dados numéricos , Humanos , Prevalência , Fatores de Risco , Produtos do Tabaco , Poluição por Fumaça de Tabaco/estatística & dados numéricos , Tuberculose/epidemiologia
11.
J Mol Neurosci ; 74(2): 41, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602576

RESUMO

KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1ß) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging. Using a 24-h reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.


Assuntos
Canabidiol , Animais , Camundongos , RNA Interferente Pequeno/genética , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Hiperalgesia/tratamento farmacológico , Anti-Inflamatórios , Modelos Animais de Doenças , Paclitaxel/toxicidade , Receptores de Canabinoides/genética
12.
Res Sq ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464007

RESUMO

KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3 and IL-1b) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pretreatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high content imaging. Using a 24-hour reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.

13.
Scand J Infect Dis ; 45(9): 711-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23808720

RESUMO

We previously found that a subset of patients with pulmonary non-tuberculous mycobacterial (pNTM) disease were taller, leaner, and had a higher prevalence of pectus excavatum and scoliosis than uninfected controls. Additionally, whole blood of pNTM patients stimulated ex vivo with live Mycobacterium intracellulare produced significantly less interferon-gamma (IFNγ) compared to that of uninfected controls. Since IFNγ production can be suppressed by transforming growth factor-beta (TGFß), an immunosuppressive cytokine, we measured basal and M. intracellulare-stimulated blood levels of TGFß in a group of 20 pNTM patients and 20 uninfected controls. In contrast to the IFNγ findings, we found that stimulated blood from pNTM patients produced significantly higher levels of TGFß compared to controls. Since pNTM patients frequently possess body features that overlap with Marfan syndrome (MFS), and increased TGFß expression is important in the pathogenesis of MFS, we posit that a yet-to-be-identified syndrome related to MFS predisposes certain individuals to develop pNTM disease.


Assuntos
Pneumopatias/sangue , Infecções por Mycobacterium não Tuberculosas/sangue , Complexo Mycobacterium avium/isolamento & purificação , Fator de Crescimento Transformador beta/sangue , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Fibrilinas , Humanos , Pneumopatias/microbiologia , Síndrome de Marfan , Proteínas dos Microfilamentos/sangue , Infecções por Mycobacterium não Tuberculosas/microbiologia
14.
J Chiropr Med ; 22(3): 204-211, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37644995

RESUMO

Objective: The primary objective of this review was to summarize systematic reviews and meta-analyses reporting on nonoperative management of lateral epicondyle tendinopathy. Methods: An umbrella review of all published systematic reviews and meta-analyses was performed. Three databases were searched using the key words "tennis elbow," "lateral epicondylitis," "non-operative," and "non-surgical modalities." The search was limited to English-language systematic reviews and meta-analyses between the years of 2000 and 2022. Results: There were 114 systematic reviews/meta-analyses, of which 35 met our inclusion criteria. These articles reviewed the following nonoperative management strategies: ultrasound, shockwave therapy, injection procedures, low-level laser therapy, joint mobilizations, exercise therapy, and electrophysical modalities. Exercise therapy was beneficial in decreasing pain regardless of dosage or type. Conflicting results were seen with ultrasound, laser, and shockwave therapy. Corticosteroid injections provided the most short-term pain relief, and platelet-rich plasma and autologous blood injections were most effective in the long term. Conclusion: A variety of nonoperative interventions were found to be effective for short- and long-term pain relief as well as functional improvement, with most interventions indicating mixed results. Due to variations in study populations and study quality, results should be interpreted with caution.

15.
J Med Chem ; 66(14): 9519-9536, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37433124

RESUMO

Natural aminosterols are promising drug candidates against neurodegenerative diseases, like Alzheimer and Parkinson, and one relevant protective mechanism occurs via their binding to biological membranes and displacement or binding inhibition of amyloidogenic proteins and their cytotoxic oligomers. We compared three chemically different aminosterols, finding that they exhibited different (i) binding affinities, (ii) charge neutralizations, (iii) mechanical reinforcements, and (iv) key lipid redistributions within membranes of reconstituted liposomes. They also had different potencies (EC50) in protecting cultured cell membranes against amyloid-ß oligomers. A global fitting analysis led to an analytical equation describing quantitatively the protective effects of aminosterols as a function of their concentration and relevant membrane effects. The analysis correlates aminosterol-mediated protection with well-defined chemical moieties, including the polyamine group inducing a partial membrane-neutralizing effect (79 ± 7%) and the cholestane-like tail causing lipid redistribution and bilayer mechanical resistance (21 ± 7%), linking quantitatively their chemistry to their protective effects on biological membranes.


Assuntos
Doenças Neurodegenerativas , Agregados Proteicos , Humanos , Membrana Celular/metabolismo , Proteínas Amiloidogênicas/química , Doenças Neurodegenerativas/metabolismo , Lipídeos , Bicamadas Lipídicas/metabolismo , Peptídeos beta-Amiloides/metabolismo
16.
RSC Adv ; 12(53): 34142-34144, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545614

RESUMO

Here we report the synthesis and genetic encoding of the lysine post translational modifications, ß-hydroxybutyryl-lysine, isobutyryl-lysine and isovaleryl-lysine. The ability to obtain a homogenous protein samples with site-specific incorporation of these acylated lysine residues can serve as a powerful tool to study the biological role of lysine post translational modifications.

17.
J Mol Neurosci ; 72(9): 1859-1874, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35779192

RESUMO

KLS-13019, a novel devised cannabinoid-like compound, was explored for anti-inflammatory actions in dorsal root ganglion cultures relevant to chemotherapy-induced peripheral neuropathy (CIPN). Time course studies with 3 µM paclitaxel indicated > 1.9-fold increases in immunoreactive (IR) area for cell body GPR55 after 30 min as determined by high content imaging. To test for reversibility of paclitaxel-induced increases in GPR55, cultures were treated for 8 h with paclitaxel alone and then a dose response to KLS-13019 added for another 16 h. This "reversal" paradigm indicated established increases in cell body GPR55 IR areas were decreased back to control levels. Because GPR55 had previously reported inflammatory actions, IL-1ß and NLRP3 (inflammasome-3 marker) were also measured in the "reversal" paradigm. Significant increases in all inflammatory markers were produced after 8 h of paclitaxel treatment alone that were reversed to control levels with KLS-13019 treatment. Accompanying studies using alamar blue indicated that decreased cellular viability produced by paclitaxel treatment was reverted back to control levels by KLS-13019. Similar studies conducted with lysophosphatidylinositol (GPR55 agonist) in DRG or hippocampal cultures demonstrated significant increases in neuritic GPR55, NLRP3 and IL-1ß areas that were reversed to control levels with KLS-13019 treatment. Studies with a human GPR55-ß-arrestin assay in Discover X cells indicated that KLS-13019 was an antagonist without agonist activity. These studies indicated that KLS-13019 has anti-inflammatory properties mediated through GPR55 antagonist actions. Together with previous studies, KLS-13019 is a potent neuroprotective, anti-inflammatory cannabinoid with therapeutic potential for high efficacy treatment of neuropathic pain.


Assuntos
Canabinoides , Neuralgia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Canabinoides/uso terapêutico , Gânglios Espinais/metabolismo , Hipocampo/metabolismo , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuralgia/tratamento farmacológico , Paclitaxel/farmacologia , Receptores de Canabinoides/metabolismo
18.
Proc Natl Acad Sci U S A ; 105(25): 8513-8, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18559857

RESUMO

Collagens are integral structural proteins in animal tissues and play key functional roles in cellular modulation. We sought to discover collagen model peptides (CMPs) that would form triple helices and self-assemble into supramolecular fibrils exhibiting collagen-like biological activity without preorganizing the peptide chains by covalent linkages. This challenging objective was accomplished by placing aromatic groups on the ends of a representative 30-mer CMP, (GPO)(10), as with l-phenylalanine and l-pentafluorophenylalanine in 32-mer 1a. Computational studies on homologous 29-mers 1a'-d' (one less GPO), as pairs of triple helices interacting head-to-tail, yielded stabilization energies in the order 1a' > 1b' > 1c' > 1d', supporting the hypothesis that hydrophobic aromatic groups can drive CMP self-assembly. Peptides 1a-d were studied comparatively relative to structural properties and ability to stimulate human platelets. Although each 32-mer formed stable triple helices (CD) spectroscopy, only 1a and 1b self-assembled into micrometer-scale fibrils. Light microscopy images for 1a depicted long collagen-like fibrils, whereas images for 1d did not. Atomic force microscopy topographical images indicated that 1a and 1b self-organize into microfibrillar species, whereas 1c and 1d do not. Peptides 1a and 1b induced the aggregation of human blood platelets with a potency similar to type I collagen, whereas 1c was much less effective, and 1d was inactive (EC(50) potency: 1a/1b >> 1c > 1d). Thus, 1a and 1b spontaneously self-assemble into thrombogenic collagen-mimetic materials because of hydrophobic aromatic interactions provided by the special end-groups. These findings have important implications for the design of biofunctional CMPs.


Assuntos
Colágenos Fibrilares/química , Peptídeos/química , Trombina/metabolismo , Biomimética , Dicroísmo Circular , Colágenos Fibrilares/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Modelos Moleculares , Peptídeos/síntese química , Trombina/química
19.
Br J Pharmacol ; 178(15): 3067-3078, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33822373

RESUMO

BACKGROUND AND PURPOSE: Cannabidiol (CBD) is a non-euphorigenic component of Cannabis sativa that prevents the development of paclitaxel-induced mechanical sensitivity in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). We recently reported that the CBD structural analogue KLS-13019 shows efficacy in an in vitro model of CIPN. The present study was to characterize the behavioural effects of KLS-13019 compared to CBD and morphine in mouse models of CIPN, nociceptive pain and reinforcement. EXPERIMENTAL APPROACH: Prevention or reversal of paclitaxel-induced mechanical sensitivity were assessed following intraperitoneal or oral administration of CBD, KLS-13019 or morphine. Antinociceptive activity using acetic acid-induced stretching and hot plate assay, anti-reinforcing effects on palatable food or morphine self-administration and binding to human opioid receptors were also determined. KEY RESULTS: Like CBD, KLS-13019 prevented the development of mechanical sensitivity associated with paclitaxel administration. In contrast to CBD, KLS-13019 was also effective at reversing established mechanical sensitivity. KLS-13019 significantly attenuated acetic acid-induced stretching and produced modest effects in the hot plate assay. KLS-13019 was devoid of activity at µ-, δ- or κ-opioid receptors. Lastly, KLS-13019, but not CBD, attenuated the reinforcing effects of palatable food or morphine. CONCLUSIONS AND IMPLICATIONS: KLS-13019 like CBD, prevented the development of CIPN, while KLS-13019 uniquely attenuated established CIPN. Because KLS-13019 binds to fewer biological targets, this will help to identifying molecular mechanisms shared by these two compounds and those unique to KLS-13019. Lastly, KLS-13019 may possess the ability to attenuate reinforced behaviour, an effect not observed in the present study with CBD.


Assuntos
Canabidiol , Dor Nociceptiva , Animais , Canabidiol/farmacologia , Modelos Animais de Doenças , Camundongos , Morfina , Reforço Psicológico
20.
J Mol Neurosci ; 68(4): 603-619, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31077084

RESUMO

Treatment with cannabidiol (CBD) or KLS-13019 (novel CBD analog), has previously been shown to prevent paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). The mechanism of action for CBD- and KLS-13019-mediated protection now has been explored with dissociated dorsal root ganglion (DRG) cultures using small interfering RNA (siRNA) to the mitochondrial Na+ Ca2+ exchanger-1 (mNCX-1). Treatment with this siRNA produced a 50-55% decrease in the immunoreactive (IR) area for mNCX-1 in neuronal cell bodies and a 72-80% decrease in neuritic IR area as determined with high-content image analysis. After treatment with 100 nM KLS-13019 and siRNA, DRG cultures exhibited a 75 ± 5% decrease in protection from paclitaxel-induced toxicity; whereas siRNA studies with 10 µM CBD produced a 74 ± 3% decrease in protection. Treatment with mNCX-1 siRNA alone did not produce toxicity. The protective action of cannabidiol and KLS-13019 against paclitaxel-induced toxicity during a 5-h test period was significantly attenuated after a 4-day knockdown of mNCX-1 that was not attributable to toxicity. These data indicate that decreases in neuritic mNCX-1 corresponded closely with decreased protection after siRNA treatment. Pharmacological blockade of mNCX-1 with CGP-37157 produced complete inhibition of cannabinoid-mediated protection from paclitaxel in DRG cultures, supporting the observed siRNA effects on mechanism.


Assuntos
Canabidiol/farmacologia , Gânglios Espinais/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Animais , Células Cultivadas , Hiperalgesia , Neurônios/metabolismo , Paclitaxel/toxicidade , Interferência de RNA , Ratos , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA