Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Chem Biol ; 19(6): 703-711, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36732620

RESUMO

Signal transducer and activator of transcription 5 (STAT5) is an attractive therapeutic target, but successful targeting of STAT5 has proved to be difficult. Here we report the development of AK-2292 as a first, potent and selective small-molecule degrader of both STAT5A and STAT5B isoforms. AK-2292 induces degradation of STAT5A/B proteins with an outstanding selectivity over all other STAT proteins and more than 6,000 non-STAT proteins, leading to selective inhibition of STAT5 activity in cells. AK-2292 effectively induces STAT5 depletion in normal mouse tissues and human chronic myeloid leukemia (CML) xenograft tissues and achieves tumor regression in two CML xenograft mouse models at well-tolerated dose schedules. AK-2292 is not only a powerful research tool with which to investigate the biology of STAT5 and the therapeutic potential of selective STAT5 protein depletion and inhibition but also a promising lead compound toward ultimate development of a STAT5-targeted therapy.


Assuntos
Neoplasias , Fator de Transcrição STAT5 , Humanos , Camundongos , Animais , Fator de Transcrição STAT5/metabolismo
2.
Nat Chem Biol ; 13(2): 218-225, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27992879

RESUMO

The Mycobacterium tuberculosis (Mtb) DosRST two-component regulatory system promotes the survival of Mtb during non-replicating persistence (NRP). NRP bacteria help drive the long course of tuberculosis therapy; therefore, chemical inhibition of DosRST may inhibit the ability of Mtb to establish persistence and thus shorten treatment. Using a DosRST-dependent fluorescent Mtb reporter strain, a whole-cell phenotypic high-throughput screen of a ∼540,000 compound small-molecule library was conducted. The screen discovered novel inhibitors of the DosRST regulon, including three compounds that were subject to follow-up studies: artemisinin, HC102A and HC103A. Under hypoxia, all three compounds inhibit Mtb-persistence-associated physiological processes, including triacylglycerol synthesis, survival and antibiotic tolerance. Artemisinin functions by disabling the heme-based DosS and DosT sensor kinases by oxidizing ferrous heme and generating heme-artemisinin adducts. In contrast, HC103A inhibits DosS and DosT autophosphorylation activity without targeting the sensor kinase heme.


Assuntos
Artemisininas/farmacologia , Histidina Quinase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Artemisininas/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Histidina Quinase/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 28(9): 1507-1515, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29627263

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) regulate the desensitization and internalization of GPCRs. Two of these, GRK2 and GRK5, are upregulated in heart failure and are promising targets for heart failure treatment. Although there have been several reports of potent and selective inhibitors of GRK2 there are few for GRK5. Herein, we describe a ligand docking approach utilizing the crystal structures of the GRK2-Gßγ·GSK180736A and GRK5·CCG215022 complexes to search for amide substituents predicted to confer GRK2 and/or GRK5 potency and selectivity. From this campaign, we successfully generated two new potent GRK5 inhibitors, although neither exhibited selectivity over GRK2.


Assuntos
Amidas/farmacologia , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 5 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Amidas/síntese química , Amidas/química , Relação Dose-Resposta a Droga , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 28(10): 1972-1980, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29650289

RESUMO

The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 µM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis.


Assuntos
Antiprotozoários/química , Catepsina L/antagonistas & inibidores , Sistema Nervoso Central/metabolismo , Dipeptídeos/química , Inibidores de Proteases/química , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Domínio Catalítico , Catepsina L/metabolismo , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Meia-Vida , Humanos , Concentração Inibidora 50 , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia
5.
J Virol ; 88(19): 11199-214, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031353

RESUMO

Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 µM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of neurotropic alphaviruses and, potentially, of other RNA viruses. IMPORTANCE There are currently no approved drugs to treat infections with alphaviruses. We previously identified a novel series of compounds with activity against these potentially devastating pathogens (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). We have now produced third-generation compounds with enhanced potency, and this manuscript provides detailed information on the antiviral activity of these advanced-generation compounds, including activity in an animal model. The results of this study represent a notable achievement in the continued development of this novel class of antiviral inhibitors.


Assuntos
Antivirais/farmacologia , Vírus da Encefalite Equina do Oeste/efeitos dos fármacos , Encefalomielite Equina/tratamento farmacológico , Indóis/farmacologia , Piridinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/síntese química , Bunyaviridae/efeitos dos fármacos , Bunyaviridae/crescimento & desenvolvimento , Linhagem Celular , Vírus da Encefalite Equina do Oeste/crescimento & desenvolvimento , Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/mortalidade , Encefalomielite Equina/virologia , Feminino , Indóis/síntese química , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/virologia , Paramyxoviridae/efeitos dos fármacos , Paramyxoviridae/crescimento & desenvolvimento , Picornaviridae/efeitos dos fármacos , Picornaviridae/crescimento & desenvolvimento , Biossíntese de Proteínas/efeitos dos fármacos , Piridinas/síntese química , Replicon/efeitos dos fármacos , Relação Estrutura-Atividade , Análise de Sobrevida
6.
Bioorg Med Chem Lett ; 23(13): 3826-32, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707258

RESUMO

CCG-1423 (1) is a novel inhibitor of Rho/MKL1/SRF-mediated gene transcription that inhibits invasion of PC-3 prostate cancer cells in a Matrigel model of metastasis. We recently reported the design and synthesis of conformationally restricted analogs (e.g., 2) with improved selectivity for inhibiting invasion versus acute cytotoxicity. In this study we conducted a survey of aromatic substitution with the goal of improving physicochemical parameters (e.g., ClogP, MW) for future efficacy studies in vivo. Two new compounds were identified that attenuated cytotoxicity even further, and were fourfold more potent than 2 at inhibiting PC-3 cell migration in a scratch wound assay. One of these (8a, CCG-203971, IC50=4.2 µM) was well tolerated in mice for 5 days at 100mg/kg/day i.p., and was able to achieve plasma levels exceeding the migration IC50 for up to 3 h.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Ácidos Nipecóticos/farmacologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Fator de Resposta Sérica/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Anilidas/síntese química , Anilidas/química , Anilidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Benzamidas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Estrutura Molecular , Metástase Neoplásica/tratamento farmacológico , Ácidos Nipecóticos/síntese química , Ácidos Nipecóticos/química , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Relação Estrutura-Atividade , Transativadores , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
7.
J Med Chem ; 66(4): 2717-2743, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36735833

RESUMO

STAT5 is an attractive therapeutic target for human cancers. We report herein the discovery of a potent and selective STAT5 degrader with strong antitumor activity in vivo. We first obtained small-molecule ligands with sub-micromolar to low micromolar binding affinities to STAT5 and STAT6 SH2 domains and determined co-crystal structures of three such ligands in complex with STAT5A. We successfully transformed these ligands into potent and selective STAT5 degraders using the PROTAC technology with AK-2292 as the best compound. AK-2292 effectively induces degradation of STAT5A, STAT5B, and phosphorylated STAT5 proteins in a concentration- and time-dependent manner in acute myeloid leukemia (AML) cell lines and demonstrates excellent degradation selectivity for STAT5 over all other STAT members. It exerts potent and specific cell growth inhibitory activity in AML cell lines with high levels of phosphorylated STAT5. AK-2292 effectively reduces STAT5 protein in vivo and achieves strong antitumor activity in mice at well-tolerated dose schedules.


Assuntos
Leucemia Mieloide Aguda , Fator de Transcrição STAT5 , Humanos , Animais , Camundongos , Fator de Transcrição STAT5/metabolismo , Ligantes , Leucemia Mieloide Aguda/tratamento farmacológico , Domínios de Homologia de src , Linhagem Celular
8.
J Med Chem ; 66(13): 8822-8843, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37382562

RESUMO

We report the discovery of ARD-2051 as a potent and orally efficacious androgen receptor (AR) proteolysis-targeting chimera degrader. ARD-2051 achieves DC50 values of 0.6 nM and Dmax >90% in inducing AR protein degradation in both the LNCaP and VCaP prostate cancer cell lines, potently and effectively suppresses AR-regulated genes, and inhibits cancer cell growth. ARD-2051 achieves a good oral bioavailability and pharmacokinetic profile in mouse, rat, and dog. A single oral dose of ARD-2051 strongly reduces AR protein and suppresses AR-regulated gene expression in the VCaP xenograft tumor tissue in mice. Oral administration of ARD-2051 effectively inhibits VCaP tumor growth and causes no signs of toxicity in mice. ARD-2051 is a promising AR degrader for advanced preclinical development for the treatment of AR+ human cancers.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Camundongos , Ratos , Animais , Cães , Receptores Androgênicos/metabolismo , Quimera de Direcionamento de Proteólise , Proteólise , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia
9.
J Med Chem ; 66(18): 13280-13303, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37683104

RESUMO

We report herein the discovery and extensive characterization of ARD-1676, a highly potent and orally efficacious PROTAC degrader of the androgen receptor (AR). ARD-1676 was designed using a new class of AR ligands and a novel cereblon ligand. It has DC50 values of 0.1 and 1.1 nM in AR+ VCaP and LNCaP cell lines, respectively, and IC50 values of 11.5 and 2.8 nM in VCaP and LNCaP cell lines, respectively. ARD-1676 effectively induces degradation of a broad panel of clinically relevant AR mutants. ARD-1676 has an oral bioavailability of 67, 44, 31, and 99% in mice, rats, dogs, and monkeys, respectively. Oral administration of ARD-1676 effectively reduces the level of AR protein in the VCaP tumor tissue in mice and inhibits tumor growth in the VCaP mouse xenograft tumor model without any sign of toxicity. ARD-1676 is a highly promising development candidate for the treatment of AR+ human prostate cancer.

10.
J Lipid Res ; 53(2): 282-91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22058426

RESUMO

Synthesis inhibition is the basis for the treatment of type 1 Gaucher disease by the glucosylceramide synthase (GCS) inhibitor eliglustat tartrate. However, the extended use of eliglustat and related compounds for the treatment of glycosphingolipid storage diseases with CNS manifestations is limited by the lack of brain penetration of this drug. Property modeling around the D-threo-1-phenyl-2-decanoylamino-3-morpholino-propanol (PDMP) pharmacophore was employed in a search for compounds of comparable activity against the GCS but lacking P-glycoprotein (MDR1) recognition. Modifications of the carboxamide N-acyl group were made to lower total polar surface area and rotatable bond number. Compounds were screened for inhibition of GCS in crude enzyme and whole cell assays and for MDR1 substrate recognition. One analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (CCG-203586), was identified that inhibited GCS at low nanomolar concentrations with little to no apparent recognition by MDR1. Intraperitoneal administration of this compound to mice for 3 days resulted in a significant dose dependent decrease in brain glucosylceramide content, an effect not seen in mice dosed in parallel with eliglustat tartrate.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glucosilceramidas/metabolismo , Glucosiltransferases/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Dioxanos/síntese química , Dioxanos/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Indanos/síntese química , Indanos/farmacologia , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/química , Vimblastina/farmacocinética
11.
Bioorg Med Chem Lett ; 21(20): 6094-9, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21903392

RESUMO

A series of rifamycin S and rifampin analogues incorporating substituted 8-amino, 8-thio, and 1,8-pyrazole substituents has been synthesized. The compounds were made by activation of the C-8 phenol as a sulfonate ester, followed by displacement with selected nitrogen and sulfur nucleophiles. The analogues were screened in assays to quantify their antitubercular activity under both aerobic and anaerobic conditions, and for inhibition of wild-type Mycobacterium tuberculosis (MTB) RNAP and rifamycin-resistant MTB RNAP (S450L) via an in vitro rolling circle transcription assay. Additionally, the MIC(90) values were determined for these analogues against Escherichia coli strains. Although none of the analogues displayed superior enzymatic or microbiological activity to their parent scaffolds, the results are consistent with the Rif C-8 hydroxyl acting as a hydrogen bond acceptor with S450 and that Rif resistance in the S450L mutant is due to loss of this hydrogen bond. Representative analogues were also evaluated in the human pregnane X receptor (PXR) activation assay.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/química , Rifampina/farmacologia , Rifamicinas/química , Rifamicinas/farmacologia , Antituberculosos/síntese química , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Rifampina/síntese química , Rifamicinas/síntese química , Tuberculose/tratamento farmacológico
12.
J Med Chem ; 64(18): 13487-13509, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34473519

RESUMO

We report herein the discovery of exceptionally potent and orally bioavailable PROTAC AR degraders with ARD-2585 being the most promising compound. ARD-2585 achieves DC50 values of ≤0.1 nM in the VCaP cell line with AR gene amplification and in the LNCaP cell line carrying an AR mutation. It potently inhibits cell growth with IC50 values of 1.5 and 16.2 nM in the VCaP and LNCaP cell lines, respectively, and achieves excellent pharmacokinetics and 51% of oral bioavailability in mice. It is more efficacious than enzalutamide in inhibition of VCaP tumor growth and does not cause any sign of toxicity in mice. ARD-2585 is a promising AR degrader for extensive investigations for the treatment of advanced prostate cancer.


Assuntos
Antineoplásicos/uso terapêutico , Ftalimidas/uso terapêutico , Piperidonas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Proteólise/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antagonistas de Receptores de Andrógenos/síntese química , Antagonistas de Receptores de Andrógenos/farmacocinética , Antagonistas de Receptores de Andrógenos/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Masculino , Camundongos SCID , Estrutura Molecular , Ftalimidas/síntese química , Ftalimidas/farmacocinética , Piperidonas/síntese química , Piperidonas/farmacocinética , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Med Chem ; 64(14): 10333-10349, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34196551

RESUMO

Targeting the menin-MLL protein-protein interaction is being pursued as a new therapeutic strategy for the treatment of acute leukemia carrying MLL-rearrangements (MLLr leukemia). Herein, we report M-1121, a covalent and orally active inhibitor of the menin-MLL interaction capable of achieving complete and persistent tumor regression. M-1121 establishes covalent interactions with Cysteine 329 located in the MLL binding pocket of menin and potently inhibits growth of acute leukemia cell lines carrying MLL translocations with no activity in cell lines with wild-type MLL. Consistent with the mechanism of action, M-1121 drives dose-dependent down-regulation of HOXA9 and MEIS1 gene expression in the MLL-rearranged MV4;11 leukemia cell line. M-1121 is orally bioavailable and shows potent antitumor activity in vivo with tumor regressions observed at tolerated doses in the MV4;11 subcutaneous and disseminated models of MLL-rearranged leukemia. Together, our findings support development of an orally active covalent menin inhibitor as a new therapy for MLLr leukemia.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Modelos Moleculares , Estrutura Molecular , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade
14.
Anal Biochem ; 392(2): 155-61, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19497294

RESUMO

Flowcytometric procedures provide distinct advantages over the colorimetric methods currently in use to monitor erythrocytes for exposure of patients to organophosphorus (OP) pesticides and chemical warfare agents; therefore, they warrant exploration. Two types of fluorescent probes-one to detect the total acetylcholinesterase on erythrocytes (RBC-AChE) and the other to distinguish between the active and OP-inhibited RBC-AChE-have been explored. Our studies demonstrate that a fluorescently conjugated fasciculin can be used to monitor total, active, and OP-inhibited RBC-AChE. However, a fluorescently tagged potent inhibitor of AChE, TZ2PIQ-A6 with a K(d) of 33 fM, did not distinguish between the active and OP-inhibited RBC-AChE, nor did three different biotinylated OP compounds. The biotin-fluorescent avidin approach is not a viable procedure for monitoring RBC-AChE. Western blot studies indicate that there are at least 20 serine hydrolases on the surface of red blood cells (RBCs). Plans currently under way for the development of more specific probes to distinguish between active and OP-inhibited RBC-AChE are discussed.


Assuntos
Acetilcolinesterase/análise , Inibidores da Colinesterase/farmacologia , Eritrócitos/efeitos dos fármacos , Citometria de Fluxo/métodos , Compostos Organofosforados/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/sangue , Inibidores da Colinesterase/química , Eritrócitos/enzimologia , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Compostos Organofosforados/química
15.
J Med Chem ; 59(8): 3793-807, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27050625

RESUMO

G protein-coupled receptors (GPCRs) are central to many physiological processes. Regulation of this superfamily of receptors is controlled by GPCR kinases (GRKs), some of which have been implicated in heart failure. GSK180736A, developed as a Rho-associated coiled-coil kinase 1 (ROCK1) inhibitor, was identified as an inhibitor of GRK2 and co-crystallized in the active site. Guided by its binding pose overlaid with the binding pose of a known potent GRK2 inhibitor, Takeda103A, a library of hybrid inhibitors was developed. This campaign produced several compounds possessing high potency and selectivity for GRK2 over other GRK subfamilies, PKA, and ROCK1. The most selective compound, 12n (CCG-224406), had an IC50 for GRK2 of 130 nM, >700-fold selectivity over other GRK subfamilies, and no detectable inhibition of ROCK1. Four of the new inhibitors were crystallized with GRK2 to give molecular insights into the binding and kinase selectivity of this class of inhibitors.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Bovinos , Células Cultivadas , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Conformação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Quinases Associadas a rho/antagonistas & inibidores
16.
J Mol Graph Model ; 23(5): 395-407, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15781182

RESUMO

We present two new empirical scoring functions, LigScore1 and LigScore2, that attempt to accurately predict the binding affinity between ligand molecules and their protein receptors. The LigScore functions consist of three distinct terms that describe the van der Waals interaction, the polar attraction between the ligand and protein, and the desolvation penalty attributed to the binding of the polar ligand atoms to the protein and vice versa. Utilizing a regression approach on a data set of 118 protein-ligand complexes we have obtained a linear equation, LigScore2, using these three descriptors. LigScore2 has good predictability with regard to experimental pKi values yielding a correlation coefficient, r2), of 0.75 and a standard deviation of 1.04 over the training data set, which consists of a diverse set of proteins that span more than seven protein families.


Assuntos
Algoritmos , Receptores de Superfície Celular/metabolismo , Bases de Dados de Proteínas , Cinética , Ligantes , Modelos Estatísticos , Ligação Proteica , Análise de Regressão , Termodinâmica
17.
mBio ; 5(2): e01089-13, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24570372

RESUMO

The urinary tract is one of the most common sites of infection in humans, and uropathogenic Escherichia coli (UPEC) is the main causative agent of urinary tract infections. Bacteria colonizing the urinary tract face extremely low iron availability. To counteract this, UPEC expresses a wide variety of iron acquisition systems. To exploit iron acquisition in UPEC as a global target for small-molecule inhibition, we developed and carried out a whole-cell growth-based high throughput screen of 149,243 compounds. Our primary assay was carried out under iron-limiting conditions. Hits in the primary screen were assayed using two counterscreens that ruled out iron chelators and compounds that inhibit growth by means other than inhibition of iron acquisition. We determined dose-response curves under two different iron conditions and purchased fresh compounds for selected hits. After retesting dose-response relationships, we identified 16 compounds that arrest growth of UPEC only under iron-limiting conditions. All compounds are bacteriostatic and do not inhibit proton motive force. A loss-of-target strategy was employed to identify the cellular target of these inhibitors. Two compounds lost inhibitory activity against a strain lacking TonB and were shown to inhibit irreversible adsorption of a TonB-dependent bacteriophage. Our results validate iron acquisition as a target for antibacterial strategies against UPEC and identify TonB as one of the cellular targets. IMPORTANCE Half of women will suffer at least one episode of urinary tract infection (UTI) during their lifetime. The current treatment for UTI involves antibiotic therapy. Resistance to currently used antibiotics has steadily increased over the last decade, generating a pressing need for the development of new therapeutic agents. Since iron is essential for colonization and scarce in the urinary tract, targeting iron acquisition would seem to be an attractive strategy. However, the multiplicity and redundancy of iron acquisition systems in uropathogenic Escherichia coli (UPEC) make it difficult to pinpoint a specific cellular target. Here, we identified 16 iron acquisition inhibitors through a whole-cell high-throughput screen, validating iron acquisition as a target for antibacterial strategies against UPEC. We also identified the cellular target of two of the inhibitors as the TonB system.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Transporte Biológico/efeitos dos fármacos , Proteínas de Escherichia coli/antagonistas & inibidores , Ferro/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Escherichia coli Uropatogênica/efeitos dos fármacos , Colífagos/fisiologia , Avaliação Pré-Clínica de Medicamentos , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Escherichia coli Uropatogênica/metabolismo , Ligação Viral
18.
J Med Chem ; 56(11): 4758-63, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23679862

RESUMO

Rifampin, a semisynthetic rifamycin, is the cornerstone of current tuberculosis treatment. Among many semisynthetic rifamycins, benzoxazinorifamycins have great potential for TB treatment due to their superior affinity for wild-type and rifampin-resistant Mycobacterium tuberculosis RNA polymerases and their reduced hepatic Cyp450 induction activity. In this study, we have determined the crystal structures of the Escherichia coli RNA polymerase complexes with two benzoxazinorifamycins. The ansa-naphthalene moieties of the benzoxazinorifamycins bind in a deep pocket of the ß subunit, blocking the path of the RNA transcript. The C3'-tail of benzoxazinorifamycin fits a cavity between the ß subunit and σ factor. We propose that in addition to blocking RNA exit, the benzoxazinorifamycin C3'-tail changes the σ region 3.2 loop position, which influences the template DNA at the active site, thereby reducing the efficiency of transcription initiation. This study supports expansion of structure-activity relationships of benzoxazinorifamycins inhibition of RNA polymerase toward uncovering superior analogues with development potential.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Rifamicinas/química , Antibióticos Antituberculose , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/genética , Holoenzimas/química , Modelos Moleculares , Mutação , Conformação Proteica , Rifamicinas/síntese química , Transcrição Gênica
19.
J Biomol Screen ; 17(8): 1080-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22706349

RESUMO

High-throughput screening (HTS) has historically been used by the pharmaceutical industry to rapidly test hundreds of thousands of compounds to identify potential drug candidates. More recently, academic groups have used HTS to identify new chemical probes or small interfering RNA (siRNA) that can serve as experimental tools to examine the biology or physiology of novel proteins, processes, or interactions. HTS presents a significant challenge with the vast and complex nature of data generated. This report describes MScreen, a Web-based, open-source cheminformatics application for chemical library and siRNA plate management, primary HTS and dose-response data handling, structure search, and administrative functions. Each project in MScreen can be secured with passwords or shared in an open-information environment that enables collaborators to easily compare data from many screens, providing a useful means to identify compounds with desired selectivity. Unique features include compound, substance, mixture, and siRNA plate creation and formatting; automated dose-response fitting and quality control (QC); and user, target, and assay method administration. MScreen provides an effective means to facilitate HTS information handling and analysis in the academic setting so that users can efficiently view their screening data and evaluate results for follow-up.


Assuntos
Bases de Dados de Compostos Químicos , Ensaios de Triagem em Larga Escala , Armazenamento e Recuperação da Informação , RNA Interferente Pequeno , Bibliotecas de Moléculas Pequenas/farmacologia , Internet
20.
ACS Chem Neurosci ; 3(7): 546-56, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22860224

RESUMO

ΔFosB protein accumulates in the striatum in response to chronic administration of drugs of abuse, L-DOPA, or stress, triggering long lasting neural and behavioral changes that underlie aspects of drug addiction, abnormal involuntary movements (dyskinesia), and depression. ΔFosB binds AP-1 DNA consensus sequences found in promoters of many genes and can both repress or activate gene transcription. In the striatum, ΔFosB is thought to dimerize with JunD to form a functional transcription factor, though strikingly JunD does not accumulate in parallel. One explanation is that ΔFosB can recruit different partners, including itself, depending on the neuron type in which it is induced and the chronic stimulus, generating protein complexes with different effects on gene transcription. To develop chemical probes to study ΔFosB, a high-throughput screen was carried out to identify small molecules that modulate ΔFosB function. Two compounds with low micromolar activity, termed C2 and C6, disrupt the binding of ΔFosB to DNA via different mechanisms, and in in vitro assays stimulate ΔFosB-mediated transcription. In cocaine-treated mice, C2 significantly elevates mRNA levels of the AMPA glutamate receptor GluR2 subunit with specificity, a known target gene of ΔFosB that plays a role in drug addiction and endogenous resilience mechanisms. C2 and C6 show different activities against ΔFosB homodimers compared to ΔFosB/JunD heterodimers, suggesting that these compounds can be used as probes to study the contribution of different ΔFosB-containing complexes on the regulation of gene transcription in biological systems and to assess the utility of ΔFosB as a therapeutic target.


Assuntos
Preparações Farmacêuticas/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Insetos , Camundongos , Preparações Farmacêuticas/metabolismo , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA