RESUMO
Expansion of a single repetitive DNA sequence, termed a tandem repeat (TR), is known to cause more than 50 diseases1,2. However, repeat expansions are often not explored beyond neurological and neurodegenerative disorders. In some cancers, mutations accumulate in short tracts of TRs, a phenomenon termed microsatellite instability; however, larger repeat expansions have not been systematically analysed in cancer3-8. Here we identified TR expansions in 2,622 cancer genomes spanning 29 cancer types. In seven cancer types, we found 160 recurrent repeat expansions (rREs), most of which (155/160) were subtype specific. We found that rREs were non-uniformly distributed in the genome with enrichment near candidate cis-regulatory elements, suggesting a potential role in gene regulation. One rRE, a GAAA-repeat expansion, located near a regulatory element in the first intron of UGT2B7 was detected in 34% of renal cell carcinoma samples and was validated by long-read DNA sequencing. Moreover, in preliminary experiments, treating cells that harbour this rRE with a GAAA-targeting molecule led to a dose-dependent decrease in cell proliferation. Overall, our results suggest that rREs may be an important but unexplored source of genetic variation in human cancer, and we provide a comprehensive catalogue for further study.
Assuntos
Expansão das Repetições de DNA , Genoma Humano , Neoplasias , Humanos , Sequência de Bases , Expansão das Repetições de DNA/genética , Genoma Humano/genética , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Análise de Sequência de DNA , Regulação da Expressão Gênica , Elementos Reguladores de Transcrição/genética , Íntrons/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células/efeitos dos fármacos , Reprodutibilidade dos TestesRESUMO
Some individuals do not return to baseline health following SARS-CoV-2 infection, leading to a condition known as Long COVID. The underlying pathophysiology of Long COVID remains unknown. Given that autoantibodies have been found to play a role in severity of COVID infection and certain other post-COVID sequelae, their potential role in Long COVID is important to investigate. Here we apply a well-established, unbiased, proteome-wide autoantibody detection technology (PhIP-Seq) to a robustly phenotyped cohort of 121 individuals with Long COVID, 64 individuals with prior COVID-19 who reported full recovery, and 57 pre-COVID controls. While a distinct autoreactive signature was detected which separates individuals with prior COVID infection from those never exposed to COVID, we did not detect patterns of autoreactivity that separate individuals with Long COVID relative to individuals fully recovered from SARS-CoV-2 infection. These data suggest that there are robust alterations in autoreactive antibody profiles due to infection; however, no association of autoreactive antibodies and Long COVID was apparent by this assay.
RESUMO
Some individuals do not return to baseline health following SARS-CoV-2 infection, leading to a condition known as long COVID. The underlying pathophysiology of long COVID remains unknown. Given that autoantibodies have been found to play a role in severity of SARS-CoV-2 infection and certain other post-COVID sequelae, their potential role in long COVID is important to investigate. Here, we apply a well-established, unbiased, proteome-wide autoantibody detection technology (T7 phage-display assay with immunoprecipitation and next-generation sequencing, PhIP-Seq) to a robustly phenotyped cohort of 121 individuals with long COVID, 64 individuals with prior COVID-19 who reported full recovery, and 57 pre-COVID controls. While a distinct autoreactive signature was detected that separated individuals with prior SARS-CoV-2 infection from those never exposed to SARS-CoV-2, we did not detect patterns of autoreactivity that separated individuals with long COVID from individuals fully recovered from COVID-19. These data suggest that there are robust alterations in autoreactive antibody profiles due to infection; however, no association of autoreactive antibodies and long COVID was apparent by this assay.