Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant J ; 109(5): 1035-1047, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35128739

RESUMO

The repression of transcription from transposable elements (TEs) by DNA methylation is necessary to maintain genome integrity and prevent harmful mutations. However, under certain circumstances, TEs may escape from the host defense system and reactivate their transcription. In Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), DNA demethylases target the sequences derived from TEs in the central cell, the progenitor cell for the endosperm in the female gametophyte. Genome-wide DNA demethylation is also observed in the endosperm after fertilization. In the present study, we used a custom microarray to survey the transcripts generated from TEs during rice endosperm development and at selected time points in the embryo as a control. The expression patterns of TE transcripts are dynamically up- and downregulated during endosperm development, especially those of miniature inverted-repeat TEs (MITEs). Some TE transcripts were directionally controlled, whereas the other DNA transposons and retrotransposons were not. We also discovered the NUCLEAR FACTOR Y binding motif, CCAAT, in the region near the 5' terminal inverted repeat of Youren, one of the transcribed MITEs in the endosperm. Our results uncover dynamic changes in TE activity during endosperm development in rice.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Endosperma/genética , Genoma de Planta , Oryza/genética , Retroelementos/genética
2.
Planta ; 259(1): 19, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085356

RESUMO

MAIN CONCLUSION: PROG1 is necessary but insufficient for the main culm inclination while TAC1 partially takes part in it, and both genes promote tiller inclination in Asian wild rice. Asian wild rice (Oryza rufipogon), the ancestor of cultivated rice (O. sativa), has a prostrate architecture, with tillers branching from near the ground. The main culm of each plant grows upward and then tilts during the vegetative stage. Genes controlling tiller angle have been reported; however, their genetic contributions to the culm movement have not been quantified. Here, we quantified their genetic contributions to angular kinematics in the main culm and tillers. For the main culm inclination, one major QTL surrounding the PROG1 region was found. In cultivated rice, tillers firstly inclined and lately rose, while it kept inclining in wild rice. It was suggested that PROG1 affected the tiller elevation angle in the later kinematics, whereas TAC1 was weakly associated with the tiller angle in the whole vegetative stage. Micro-computed tomography (micro-CT) suggested that these angular changes are produced by the bending of culm bases. Because near-isogenic lines (NILs) of wild rice-type Prog1 and Tac1 alleles in the genetic background of cultivated rice did not show the prostrate architecture, the involvement of another gene(s) for inclination of the main culm was suggested. Our findings will not only contribute to the understanding of the morphological transition during domestication but also be used in plant breeding to precisely reproduce the ideal plant architecture by combining the effects of multiple genes.


Assuntos
Oryza , Oryza/genética , Oryza/anatomia & histologia , Microtomografia por Raio-X , Fenômenos Biomecânicos , Melhoramento Vegetal , Alelos
3.
Chromosome Res ; 29(3-4): 361-371, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648121

RESUMO

Observing chromosomes is a time-consuming and labor-intensive process, and chromosomes have been analyzed manually for many years. In the last decade, automated acquisition systems for microscopic images have advanced dramatically due to advances in their controlling computer systems, and nowadays, it is possible to automatically acquire sets of tiling-images consisting of large number, more than 1000, of images from large areas of specimens. However, there has been no simple and inexpensive system to efficiently select images containing mitotic cells among these images. In this paper, a classification system of chromosomal images by deep learning artificial intelligence (AI) that can be easily handled by non-data scientists was applied. With this system, models suitable for our own samples could be easily built on a Macintosh computer with Create ML. As examples, models constructed by learning using chromosome images derived from various plant species were able to classify images containing mitotic cells among samples from plant species not used for learning in addition to samples from the species used. The system also worked for cells in tissue sections and tetrads. Since this system is inexpensive and can be easily trained via deep learning using scientists' own samples, it can be used not only for chromosomal image analysis but also for analysis of other biology-related images.


Assuntos
Aprendizado Profundo , Inteligência Artificial , Processamento de Imagem Assistida por Computador , Microscopia
4.
Breed Sci ; 72(5): 362-371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36776441

RESUMO

Spontaneous mutations are stochastic phenomena that occur in every population. However, deleterious mutated allele present in seeds distributed to farmers must be detected and removed. Here, we eliminated undesirable mutations from the parent population in one generation through a strategy based on next-generation sequencing (NGS). This study dealt with a spontaneous albino mutant in the 'Hinohikari' rice variety grown at the Miyazaki Comprehensive Agricultural Experiment Station, Japan. The incidence of albinism in the population was 1.36%. NGS analysis revealed the genomic basis for differences between green and albino phenotypes. Every albino plant had a C insertion in the Snow-White Leaf1 (SWL1) gene on chromosome 4 causing a frameshift mutation. Selfing plants heterozygous for the mutant allele, swl1-R332P, resulted in a 3:1 green/albino ratio, confirming that a single recessive gene controls albinism. Ultrastructural leaf features in the swl1-R332P mutants displayed deformed chlorophyll-associated organelles in albino plants that were similar to those of previously described swl1 mutants. Detection of the causative gene and its confirmation using heterozygous progenies were completed within a year. The NGS technique outlined here facilitates rapid identification of spontaneous mutations that can occur in breeder seeds.

5.
Ann Bot ; 128(5): 559-575, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232290

RESUMO

BACKGROUND AND AIMS: Cold stress in rice (Oryza sativa) plants at the reproductive stage prevents normal anther development and causes pollen sterility. Tapetum hypertrophy in anthers has been associated with pollen sterility in response to cold at the booting stage. Here, we re-examined whether the relationships between anther abnormality and pollen sterility caused by cold stress at the booting stage in rice can be explained by a monovalent factor such as tapetum hypertrophy. METHODS: After exposing plants to a 4-d cold treatment at the booting stage, we collected and processed anthers for transverse sectioning immediately and at the flowering stage. We anatomically evaluated the effect of cold treatment on anther internal morphologies, pollen fertilities and pollen numbers in the 13 cultivars with various cold sensitivities. KEY RESULTS: We observed four types of morphological anther abnormalities at each stage. Pollen sterility was positively correlated with the frequency of undeveloped locules, but not with tapetum hypertrophy as commonly believed. In cold-sensitive cultivars grown at low temperatures, pollen sterility was more frequent than anther morphological abnormalities, and some lines showed remarkably high pollen sterility without any anther morphological alterations. Most morphological anomalies occurred only in specific areas within large and small locules. Anther length tended to shorten in response to cold treatment and was positively correlated with pollen number. One cultivar showed a considerably reduced pollen number, but fertile pollen grains under cold stress. We propose three possible relationships to explain anther structure and pollen sterility and reduction due to cold stress. CONCLUSIONS: The pollen sterility caused by cold stress at the booting stage was correlated with the frequency of entire locule-related abnormalities, which might represent a phenotypic consequence, but not a direct cause of pollen abortion. Multivalent factors might underlie the complicated relationships between anther abnormality and pollen sterility in rice.


Assuntos
Infertilidade , Oryza , Resposta ao Choque Frio , Flores , Infertilidade das Plantas , Pólen
6.
PLoS Pathog ; 13(6): e1006413, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28662199

RESUMO

The interplay of different virus species in a host cell after infection can affect the adaptation of each virus. Endogenous viral elements, such as endogenous pararetroviruses (PRVs), have arisen from vertical inheritance of viral sequences integrated into host germline genomes. As viral genomic fossils, these sequences can thus serve as valuable paleogenomic data to study the long-term evolutionary dynamics of virus-virus interactions, but they have rarely been applied for this purpose. All extant PRVs have been considered autonomous species in their parasitic life cycle in host cells. Here, we provide evidence for multiple non-autonomous PRV species with structural defects in viral activity that have frequently infected ancient grass hosts and adapted through interplay between viruses. Our paleogenomic analyses using endogenous PRVs in grass genomes revealed that these non-autonomous PRV species have participated in interplay with autonomous PRVs in a possible commensal partnership, or, alternatively, with one another in a possible mutualistic partnership. These partnerships, which have been established by the sharing of noncoding regulatory sequences (NRSs) in intergenic regions between two partner viruses, have been further maintained and altered by the sequence homogenization of NRSs between partners. Strikingly, we found that frequent region-specific recombination, rather than mutation selection, is the main causative mechanism of NRS homogenization. Our results, obtained from ancient DNA records of viruses, suggest that adaptation of PRVs has occurred by concerted evolution of NRSs between different virus species in the same host. Our findings further imply that evaluation of within-host NRS interactions within and between populations of viral pathogens may be important.


Assuntos
Fósseis/virologia , Doenças das Plantas/virologia , Poaceae/virologia , Retroviridae/genética , Adaptação Biológica , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Retrovirus Endógenos/isolamento & purificação , Retrovirus Endógenos/fisiologia , Evolução Molecular , Genoma Viral , Genômica , Filogenia , RNA não Traduzido/genética , RNA Viral/genética , Retroviridae/classificação , Retroviridae/isolamento & purificação , Retroviridae/fisiologia , Regiões não Traduzidas
7.
Plant Physiol ; 173(2): 1492-1501, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28008001

RESUMO

Transposable elements (TEs) are considered to be parasites of host genomes because they act as powerful mutagens. If not kept in check, they can cause gene disruption, genome rearrangement, and genomic takeover. Hence, activities of TEs are under the rigid control of hosts. To date, all identified TE regulations have been epigenetic dependent, with the exception of the DNA transposon Tam3. Blocking nuclear translocation of Tam3 transposase (TPase) is consistent with the suppression of Tam3 in Antirrhinum majus In this article, we discovered that epigenetic-independent regulation of Tam3 is mediated by the BED-zinc finger (Znf-BED) domain of Tam3 TPase. The host targets the N terminus of the Znf-BED domain, which contains two highly conserved aromatic amino acids, to detain Tam3 TPase at the plasma membrane and to silence Tam3. Zinc finger proteins perform broader functions in transcriptional regulation through their DNA binding ability. Our data revealed that the posttranslational epigenetic-independent silencing against TEs was a result of the protein binding ability of the Znf-BED domain.


Assuntos
Antirrhinum/metabolismo , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Transposases/química , Transposases/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Antirrhinum/genética , Sequência Conservada , Elementos de DNA Transponíveis , Epigênese Genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transposases/genética
8.
Plant Physiol ; 164(2): 671-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24376281

RESUMO

Genome-wide transcriptome analyses using microarray probes containing genes and repeat sequences have been performed to examine responses to low temperatures in rice (Oryza sativa). We focused particularly on the rice anther at the booting stage, because a low temperature at this stage can result in pollen abortion. The five rice strains examined in this study showed different pollen fertilities due to a low-temperature treatment during the booting stage. The microarray analyses demonstrated that the low-temperature stress caused genome-wide changes in the transcriptional activities not only of genes but also of repeat sequences in the rice anther. The degree of the temperature-responsive changes varied among the five rice strains. Interestingly, the low-temperature-sensitive strains revealed more changes in the transcriptome when compared with the tolerant strains. The expression patterns of the repeat sequences, including miniature inverted-repeat transposable elements, transposons, and retrotransposons, were correlated with the pollen fertilities of the five strains, with the highest correlation coefficient being 0.979. Even in the low-temperature-sensitive strains, the transcriptomes displayed distinct expression patterns. The elements responding to the low temperatures were evenly distributed throughout the genome, and the major cis-motifs involved in temperature-responsive changes were undetectable from the upstream sequences in the corresponding repeats. The genome-wide responses of transcription to the temperature shift may be associated with chromatin dynamics, which facilitates environmental plasticity. A genome-wide analysis using repeat sequences suggested that stress tolerance could be conferred by insensitivity to the stimuli.


Assuntos
Temperatura Baixa , Oryza/genética , Infertilidade das Plantas/genética , Pólen/genética , Sequências Repetitivas de Ácido Nucleico/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Sequências Repetidas Invertidas , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/fisiologia , Folhas de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transcrição Gênica
9.
Genetics ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941481

RESUMO

Interspecific F1 hybrids between Asian (Oryza sativa) and African rice (Oryza glaberrima) exhibit severe sterility caused by the accumulation of hybrid sterility genes/loci at 15 or more loci. The mechanisms underlying the hybrid sterility genes are largely unknown; however, a few genes associated with the killer-protector system, which is the system most frequently associated with hybrid sterility genes, have been identified. We previously produced fertile plants as tetraploids derived from diploid interspecific F1 hybrids through anther culture; therefore, it was suggested that hybrid sterility could be overcome following tetraploidization. We investigated whether tetraploid interspecific plants produced by crossing are fertile and tested the involvement of hybrid sterility genes in the process. Fertile tetraploid interspecific F1 hybrid plants were obtained by crossing two tetraploids of Oryza sativa and Oryza glaberrima. To elucidate the relationships between pollen fertility and the hybrid sterility loci in the tetraploid F1 microspores, we performed genetic analyses of the tetraploid F2 hybrids and diploid plants obtained from the microspores of tetraploid interspecific hybrids by anther culture. The result suggested that the tetraploid interspecific hybrids overcame pollen and seed infertility based on the proportion of loci with the killer-protector system present in the tetraploids. The heterozygous hybrid sterility loci with the killer-protector system in the tetraploid segregate the homozygous killed allele (16.7-21.4%), with more than three-quarters of the gametes surviving. We theoretically and experimentally demonstrated that fertile rice progenies can be grown from tetraploid interspecific hybrids.

10.
iScience ; 27(5): 109761, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706863

RESUMO

The genetic mechanisms of reproductive isolation have been widely investigated within Asian cultivated rice (Oryza sativa); however, relevant genes between diverged species have been in sighted rather less. Herein, a gene showing selfish behavior was discovered in hybrids between the distantly related rice species Oryza longistaminata and O. sativa. The selfish allele S13l in the S13 locus impaired male fertility, discriminately eliminating pollens containing the allele S13s from O. sativa in heterozygotes (S13s/S13l). Genetic analysis revealed that a gene encoding a chromatin-remodeling factor (CHR) is involved in this phenomenon and a variety of O. sativa owns the truncated gene OsCHR745, whereas its homologue OlCHR has a complete structure in O. longistaminata. CRISPR-Cas9-mediated loss of function mutants restored fertility in hybrids. African cultivated rice, which naturally lacks the OlCHR homologue, is compatible with both S13s and S13l carriers. These results suggest that OlCHR is a Killer gene, which leads to reproductive isolation.

11.
Plant J ; 72(5): 817-28, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22900922

RESUMO

In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force.


Assuntos
Sequência Rica em At , Elementos de DNA Transponíveis , Genoma de Planta , Oryza/genética , Tungrovirus/genética , Arabidopsis/genética , Sequência de Bases , Repetições de Dinucleotídeos , Dados de Sequência Molecular
12.
New Phytol ; 197(2): 431-440, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23190182

RESUMO

Our knowledge is limited regarding mechanisms by which transposable elements control host gene expression. Two Antirrhinum lines, HAM2 and HAM5, show different petal colors, pale-red and white, respectively, although these lines contain the same insertion of transposon Tam3 in the promoter region of the nivea (niv) locus encoding chalcone synthase. Among 1000 progeny from HAM5 grown under the preferred conditions for the Tam3 transposition, a few showed an intermediate petal color between HAM2 and HAM5. Transposon tagging using these progeny identified a causative insertion of Tam3 for the HAM5 type (white) petal color, which was found 1.6 kb downstream of the niv gene. Insertion of Tam3 at the position 1.6 kb downstream of niv alone showed nearly wildtype petal pigmentation, and the niv expression reduced by only 50%. Severe suppression of niv observed in HAM5 required interaction of two Tam3 copies on either side of the niv coding sequence. DNA methylation and small interfering RNAs (siRNAs) were not associated with the suppression of niv expression in HAM5. Insertion of a pair of transposons in close proximity can interfere with the expression of gene located between the two copies, and also provide evidence that this interference is not directly associated with pathways mediated by siRNAs.


Assuntos
Antirrhinum/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Alelos , Sequência de Bases , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Metilação de DNA/genética , Epigênese Genética , Flores/genética , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Pigmentação/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
13.
AoB Plants ; 15(6): plad075, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38028749

RESUMO

Low-temperature adaptation in rice is mediated by the ability of a genotype to tolerate chilling temperatures. A genetic locus on chromosome 11 was analysed for chilling tolerance at the plumule stage in rice. The tolerant allele of A58, a japonica landrace in Japan, was inherited as a recessive gene (ctp-1A58), whereas the susceptible alleles from wild rice (Ctp-1W107) and modern variety (Ctp-1HY) were the dominant genes. Another recessive tolerant allele (ctp-1Silewah) was found in a tropical japonica variety (Silewah). Fine-mapping revealed that a candidate gene for the ctp-1 locus encoded a protein similar to the nucleotide-binding domain and leucine-rich repeat (NLR) protein, in which frameshift mutation by a 73 bp-deletion might confer chilling tolerance in ctp-1A58. Analysis of near-isogenic lines demonstrated that ctp-1A58 imparted tolerance effects only at severe chilling temperatures of 0.5 °C and 2 °C, both at plumule and seedling stages. Chilling acclimation treatments at a wide range of temperatures (8 °C-16 °C) for 72 h concealed the susceptible phenotype of Ctp-1W107 and Ctp-1HY. Furthermore, short-term acclimation treatment of 12 h at 8 °C was enough to be fully acclimated. These results suggest that the NLR gene induces a susceptible response upon exposure to severe chilling stress, however, another interacting gene(s) for acclimation response could suppress the maladaptive phenotype caused by the Ctp-1 allele. This study provides new insights for the adaptation and breeding of rice in a low-temperature environment.

14.
Front Plant Sci ; 14: 1261705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965031

RESUMO

Introduction: Rice genomes contain endogenous viral elements homologous to rice tungro bacilliform virus (RTBV) from the pararetrovirus family Caulimoviridae. These viral elements, known as endogenous RTBV-like sequences (eRTBVLs), comprise five subfamilies, eRTBVL-A, -B, -C, -D, and -X. Four subfamilies (A, B, C, and X) are present to a limited degree in the genomes of the Asian cultivated rice Oryza sativa (spp. japonica and indica) and the closely related wild species Oryza rufipogon. Methods: The eRTBVL-D sequences are widely distributed within these and other Oryza AA-genome species. Fifteen eRTBVL-D segments identified in the japonica (Nipponbare) genome occur mostly at orthologous chromosomal positions in other AA-genome species. The eRTBVL-D sequences were inserted into the genomes just before speciation of the AA-genome species. Results and discussion: Ten eRTBVL-D segments are located at six loci, which were used for our evolutionary analyses during the speciation of the AA-genome species. The degree of genetic differentiation varied among the eRTBVL-D segments. Of the six loci, three showed phylogenetic trees consistent with the standard speciation pattern (SSP) of the AA-genome species (Type A), and the other three represented phylogenies different from the SSP (Type B). The atypical phylogenetic trees for the Type B loci revealed chromosome region-specific evolution among the AA-genome species that is associated with phylogenetic incongruences: complex genome rearrangements between eRTBVL-D segments, an introgression between the distant species, and low genetic diversity of a shared eRTBVL-D segment. Using eRTBVL-D as an indicator, this study revealed the phylogenetic incongruence of local chromosomal regions with different topologies that developed during speciation.

15.
Plant J ; 65(1): 146-155, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21175897

RESUMO

It has been proposed that environmental stimuli can activate transposable elements (TEs), whereas few substantial mechanisms have been shown so far. The class-II element Tam3 from Antirrhinum majus exhibits a unique property of low-temperature-dependent transposition (LTDT). LTDT has proved invaluable in developing the gene isolation technologies that have underpinned much of modern plant developmental biology. Here, we reveal that LTDT involves differential subcellular localization of the Tam3 transposase (TPase) in cells grown at low (15°C) and high (25°C) temperatures. The mechanism is associated with the nuclear import of Tam3 TPase in Antirrhinum cells. At high temperature, the nuclear import of Tam3 TPase is severely restricted in Antirrhinum cells, whereas at low temperature, the nuclear localization of Tam3 TPase is observed in about 20% of the cells. However, in tobacco BY-2 and Allium cepa (onion) cells, Tam3 TPase is transported into most nuclei. In addition to three nuclear localization signals (NLSs), the Tam3 TPase is equipped with a nuclear localization inhibitory domain (NLID), which functions to abolish nuclear import of the TPase at high temperature in Antirrhinum. NLID in Tam3 TPase is considered to interact with Antirrhinum-specific factor(s). The host-specific regulation of the nuclear localization of transposase represents a new repertoire controlling class-II TEs.


Assuntos
Antirrhinum/enzimologia , Núcleo Celular/metabolismo , Proteínas de Plantas/metabolismo , Temperatura , Transposases/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Plantas/genética , Transposases/genética
16.
Genes Genet Syst ; 97(4): 177-184, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36372414

RESUMO

The transposon Tam3 of Antirrhinum (snapdragon) has acquired properties that distinguish it from other transposons. Mobile DNA, commonly referred to as a transposable element or transposon, is considered to be synonymous with a selfish factor. That is, a transposable element increases in copy number and moves copies of itself independently of the survival of the host organism. Therefore, the host collectively regulates the transposition activities of most transposable elements in its genome by epigenetic means. However, our analyses of the structure and behavior of Tam3, as shown by the following five results, provide evidence that it does not behave in a selfish manner in relation to the host. 1) Active transposable elements normally increase the abundance of their non-autonomous elements, whereas Tam3 is known to have no non-autonomous elements, and a limited number of around 10 copies of autonomous elements present in the genome have been isolated as active copies. 2) Tam3 does not transpose at 25 ℃, which is the optimal growth temperature for Antirrhinum. Transposition of Tam3 occurs only at low temperatures of about 15 ℃, which is stressful for Antirrhinum. 3) Few strains of Antirrhinum have been found to contain genes that specifically suppress Tam3 transposition. 4) Most of the Tam3 insertions found in Antirrhinum genes do not affect the host genome, and the expression of these host genes is not completely suppressed. 5) Transcription and translation of the Tam3 transposase gene are not epigenetically regulated by the host. These five experimental results constitute evidence that Tam3 retains features that are dissimilar to those of many other transposons and that it does not behave in a selfish manner that is detrimental to the survival of the host. In this review, we consider what kinds of behavior are required if transposons are to establish a mutually beneficial relationship with their hosts, with reference to Tam3.


Assuntos
Antirrhinum , Antirrhinum/genética , Antirrhinum/metabolismo , Elementos de DNA Transponíveis/genética , Temperatura Baixa , Temperatura
17.
Rice (N Y) ; 15(1): 65, 2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36529786

RESUMO

The Mekong Delta River in Vietnam is facing salinity intrusion caused by climate change and sea-level rise that is severely affecting rice cultivation. Here, we evaluated salinity responses of 97 rice accessions (79 landraces and 18 improved accessions) from the Mekong Delta population by adding 100 mM NaCl to the nutrient solution for up to 20 days. We observed a wide distribution in salinity tolerance/sensitivity, with two major peaks across the 97 accessions when using the standard evaluation system (SES) developed by the International Rice Research Institute. SES scores revealed strong negative correlations (ranging from - 0.68 to - 0.83) with other phenotypic indices, such as shoot elongation length, root elongation length, shoot dry weight, and root dry weight. Mineral concentrations of Na+ in roots, stems, and leaves and Ca2+ in roots and stems were positively correlated with SES scores, suggesting that tolerant accessions lower their cation exchange capacity in the root cell wall. The salinity tolerance of Mekong Delta accessions was independent from the previously described salinity tolerance-related locus Saltol, which encodes an HKT1-type transporter in the salinity-tolerant cultivars Nona Bokra and Pokkali. Indeed, genome-wide association studies using SES scores and shoot dry weight ratios of the 79 accessions as traits identified a single common peak located on chromosome 1. This SNP did not form a linkage group with other nearby SNPs and mapped to the 3' untranslated region of gene LOC_Os01g32830, over 6.5 Mb away from the Saltol locus. LOC_Os01g32830 encodes chloroplast glycolate/glycerate translocator 1 (OsPLGG1), which is responsible for photorespiration and growth. SES and shoot dry weight ratios differed significantly between the two possible haplotypes at the causal SNP. Through these analyses, we characterize Doc Phung, one of the most salinity-tolerant varieties in the Mekong Delta population and a promising new genetic resource.

18.
Plant Physiol ; 151(3): 1557-69, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19759347

RESUMO

Transposon insertions occasionally occur in the promoter regions of plant genes, many of which are still capable of being transcribed. However, it remains unclear how transcription of such promoters is able to occur. Insertion of the Tam3 transposon into various genes of Antirrhinum majus can confer leaky phenotypes without its excision. These genes, named Tam3-permissible alleles, often contain Tam3 in their promoter regions. Two alleles at different anthocyanin biosynthesis loci, nivea(recurrensTam3) (niv(rec)) and pallida(recurrensTam3) (pal(rec)), both contain Tam3 at a similar position immediately upstream of the promoter TATA-box; however, these insertions had different phenotypic consequences. Under conditions where the inserted Tam3 is immobilized, the niv(rec) line produces pale red petals, whereas the pal(rec) line produces no pigment. These pigmentation patterns are correlated with the level of transcripts from the niv(rec) or pal(rec) alleles, and these transcriptional activities are independent of DNA methylation in their promoter regions. In niv(rec), Tam3 is inserted in an orientation that results in the 3' end of Tam3 adjacent to the 5' region of the gene coding sequence. In contrast, the pal(rec) allele contains a Tam3 insertion in the opposite orientation. Four of five different nonrelated genes that are also Tam3-permissible alleles and contain Tam3 within the promoter region share the same Tam3 orientation as niv(rec). The different transcriptional activities dependent on Tam3 orientation in the Antirrhinum promoters were consistent with expression of luciferase reporter constructs introduced into yeast chromosomes but not with transient expression of these constructs in Antirrhinum cells. These results suggest that for Tam3 to sustain stable transcriptional activity in various promoters it must be embedded in chromatin.


Assuntos
Antirrhinum/genética , Cromatina/metabolismo , Elementos de DNA Transponíveis , Mutagênese Insercional , Regiões Promotoras Genéticas , Alelos , Antirrhinum/metabolismo , Metilação de DNA , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Pichia/genética
19.
Front Plant Sci ; 11: 1231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849760

RESUMO

Ploidy manipulation is an efficient technique for the development of novel phenotypes in plant breeding. However, in rice (Oryza sativa L.), severe seed sterility has been considered a barrier preventing cultivation of autotetraploids since the 1930s. Recently, a series of studies identified two fertile autotetraploids, identified herein as the PMeS (Polyploid Meiosis Stability) and Neo-Tetraploid lines. Here, we summarize their characteristics, focusing on the recovery of seed fertility, and discuss potential future directions of study in this area, providing a comprehensive understanding of current progress in the study of fertile tetraploid rice, a classical, but promising, concept for rice breeding.

20.
Front Plant Sci ; 11: 579305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224168

RESUMO

In F1 hybrids of Oryza sativa (Asian rice) and Oryza glaberrima (African rice), heterozygosity leads to a complete gamete abortion because of allelic conflict at each of the 13 hybrid sterility (HS) loci. We systematically produced 19 plants from the F1 hybrids of both the rice species by the anther culture (AC) method. Five of the 19 interspecific hybrid plants were partially fertile and able to produce seeds. Unlike ordinal doubled haploid plants resulting from AC, these regenerated plants showed various ploidy levels (diploid to pentaploid) and different zygosities (completely homozygous, completely heterozygous, and a combination). These properties were attributable to meiotic anomalies in the interspecific hybrid F1 plants. Examination of the genetic structures of the regenerated plants suggested meiotic non-reduction took place in the interspecific hybrid F1 plants. The centromeric regions in the regenerated plants revealed that the abnormal first and/or second divisions of meiosis, namely the first division restitution (FDR) and/or second division restitution (SDR), had occurred in the interspecific hybrid. Immunohistochemical observations also verified these phenomena. FDR and SDR occurrences at meiosis might strongly lead to the formation of diploid microspores. The results demonstrated that meiotic anomalies functioned as a reproductive barrier occurred before the HS genes acted in gamete of the interspecific hybrid. Although such meiotic anomalies are detrimental to pollen development, the early rescue of microspores carrying the diploid gamete resulted in the fertile regenerated plants. The five partially fertile plants carrying tetraploid genomes with heterozygous alleles of the HS loci produced fertile diploid pollens, implying that the diploid gametes circumvented the allelic conflicts at the HS loci. We also proposed how diploid male gametes avoid HS with the killer-protector model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA