Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 44(11): 1746-1751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719650

RESUMO

Tramadol is a weak opioid that produces analgesic effect via both the µ-opioid receptor (MOR) and non-opioid targets. Constipation is the most common opioid-related side effect in patients with cancer and non-cancer pain. However, the contribution of MOR to tramadol-induced constipation is unclear. Therefore, we used naldemedine, a peripherally acting MOR antagonist, and MOR-knockout mice to investigate the involvement of peripheral MOR in tramadol-induced constipation using a small intestinal transit model. A single dose of tramadol (3-100 mg/kg, per os (p.o.)) inhibited small intestinal transit dose-dependently in rats. Naldemedine (0.01-10 mg/kg, p.o.) blocked the inhibition of small intestinal transit induced by tramadol (30 mg/kg, p.o.) in rats. The transition rate increased dose-dependently over the range of naldemedine 0.01-0.3 mg/kg, and complete recovery was observed at 0.3-10 m/kg. Additionally, tramadol (30 and 100 mg/kg, subcutaneously (s.c.)) inhibited small intestinal transit in wild-type mice but not in MOR-knockout mice. These results suggest that peripheral MOR participates in tramadol-induced constipation.


Assuntos
Analgésicos Opioides/efeitos adversos , Constipação Induzida por Opioides/etiologia , Receptores Opioides mu/efeitos dos fármacos , Tramadol/efeitos adversos , Analgésicos Opioides/sangue , Analgésicos Opioides/farmacocinética , Animais , Intestino Delgado/efeitos dos fármacos , Masculino , Naltrexona/efeitos adversos , Naltrexona/análogos & derivados , Naltrexona/sangue , Naltrexona/farmacocinética , Nociceptividade/efeitos dos fármacos , Constipação Induzida por Opioides/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Opioides mu/metabolismo , Tramadol/sangue , Tramadol/farmacocinética
2.
Mol Autism ; 11(1): 68, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873342

RESUMO

BACKGROUND: Several genetic alterations, including point mutations and copy number variations in NLGN genes, have been associated with psychiatric disorders, such as autism spectrum disorder (ASD) and X-linked mental retardation (XLMR). NLGN genes encode neuroligin (NL) proteins, which are adhesion molecules that are important for proper synaptic formation and maturation. Previously, we and others found that the expression level of murine NL1 is regulated by proteolytic processing in a synaptic activity-dependent manner. METHODS: In this study, we analyzed the effects of missense variants associated with ASD and XLMR on the metabolism and function of NL4X, a protein which is encoded by the NLGN4X gene and is expressed only in humans, using cultured cells, primary neurons from rodents, and human induced pluripotent stem cell-derived neurons. RESULTS: NL4X was found to undergo proteolytic processing in human neuronal cells. Almost all NL4X variants caused a substantial decrease in the levels of mature NL4X and its synaptogenic activity in a heterologous culture system. Intriguingly, the L593F variant of NL4X accelerated the proteolysis of mature NL4X proteins located on the cell surface. In contrast, other variants decreased the cell-surface trafficking of NL4X. Notably, protease inhibitors as well as chemical chaperones rescued the expression of mature NL4X. LIMITATIONS: Our study did not reveal whether these dysfunctional phenotypes occurred in individuals carrying NLGN4X variant. Moreover, though these pathological mechanisms could be exploited as potential drug targets for ASD, it remains unclear whether these compounds would have beneficial effects on ASD model animals and patients. CONCLUSIONS: These data suggest that reduced amounts of the functional NL4X protein on the cell surface is a common mechanism by which point mutants of the NL4X protein cause psychiatric disorders, although different molecular mechanisms are thought to be involved. Furthermore, these results highlight that the precision medicine approach based on genetic and cell biological analyses is important for the development of therapeutics for psychiatric disorders.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Mutação/genética , Sinapses/patologia , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Predisposição Genética para Doença , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Camundongos , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Organogênese , Ratos Wistar
3.
Exp Hematol ; 59: 30-39.e2, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29274361

RESUMO

Lusutrombopag (S-888711), an oral small-molecule thrombopoietin receptor (TPOR) agonist, has gained first approval as a drug to treat thrombocytopenia of chronic liver disease in patients undergoing elective invasive procedures in Japan. Preclinical studies were performed to evaluate its efficacy against megakaryopoiesis and thrombopoiesis. To investigate the proliferative activity and efficacy of megakaryocytic colony formation via human TPOR, lusutrombopag was applied to cultured human c-Mpl-expressing Ba/F3 (Ba/F3-hMpl) cells and human bone marrow-derived CD34-positive cells, respectively. Lusutrombopag caused a robust increase in Ba/F3-hMpl cells by activating pathways in a manner similar to that of thrombopoietin and induced colony-forming units-megakaryocyte and polyploid megakaryocytes in human CD34-positive cells. Because lusutrombopag has high species specificity for human TPOR, there was no suitable experimental animal model for drug evaluation, except for immunodeficient mouse-based xenograft models. Therefore, a novel genetically modified knock-in mouse, TPOR-Ki/Shi, was developed by replacing mouse Mpl with human-mouse chimera Mpl. In TPOR-Ki/Shi mice, lusutrombopag significantly increased circulating platelets in a dose-dependent manner during 21-day repeated oral administration. Histopathological study of the TPOR-Ki/Shi mice on day 22 also revealed a significant increase in megakaryocytes in the bone marrow. These results indicate that lusutrombopag acts on human TPOR to upregulate differentiation and proliferation of megakaryocytic cells, leading to platelet production.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cinamatos/farmacologia , Megacariócitos/metabolismo , Modelos Biológicos , Receptores de Trombopoetina/agonistas , Tiazóis/farmacologia , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Técnicas de Introdução de Genes , Humanos , Megacariócitos/citologia , Camundongos , Camundongos Transgênicos , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo
4.
Eur J Pharmacol ; 666(1-3): 233-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21596028

RESUMO

While inhaled glucocorticoids are the best treatment for the majority of chronic asthmatics, there is a small group who do not respond to these drugs or whose disease can only be controlled by high doses of oral glucocorticoids with risks of severe side effects. Therefore, a safe novel anti-asthmatic agent which has a different mechanism from that of glucocorticoids is needed for the management of asthma. We have previously shown that an orally active prostanoid DP receptor antagonist, S-5751, had potent anti-inflammatory effects in guinea pig and sheep asthma models. In this study, using a rat asthma like model, we found that lung neutrophilia and proinflammatory cytokine secretion as well as bronchial hyperresponsiveness and lung eosinophilia were induced by repeated antigen-inhalations after antigen-sensitization. These symptoms are similar to the pathogenesis of symptomatic asthma. Orally-administered prostanoid DP receptor antagonists S-5751 and pinagladin significantly suppressed not only bronchial hyperresponsiveness and lung eosinophilia but also neutrophilia and mucus secretion in the lung, while oral prednisolone inhibited only bronchial hyperresponsiveness and eosinophil infiltration. In addition, prostanoid DP receptor antagonists significantly suppressed interleukin (IL)-1ß, IL-6 and CXCL1 mRNA in contrast to suppression of IL-4 and CCL11 mRNA by prednisolone. The majority of prostanoid DP receptor-expressing cells in both rat and human asthmatic lungs are infiltrative macrophages and/or monocytes. These results suggest that prostanoid DP receptor antagonists utilize different mechanisms from glucocorticoids, and that they would be a novel alternative and/or combination drug for asthma therapy.


Assuntos
Asma/tratamento farmacológico , Glucocorticoides/farmacologia , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Tiofenos/farmacologia , Acetilcolina/farmacologia , Idoso , Animais , Antígenos/imunologia , Asma/imunologia , Asma/metabolismo , Asma/fisiopatologia , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Muco/efeitos dos fármacos , Muco/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Prednisolona/farmacologia , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Tiofenos/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA