Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 133(1): 23-36, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31595335

RESUMO

KEY MESSAGE: ß-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, ß-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while ß-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F1 progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, ß-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase ß-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and ß-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.


Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea batatas/genética , Poliploidia , Locos de Características Quantitativas/genética , Amido/metabolismo , beta Caroteno/metabolismo , Alelos , Meio Ambiente , Estudos de Associação Genética , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Característica Quantitativa Herdável
2.
PLoS One ; 15(4): e0232173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330201

RESUMO

Quality assurance and control (QA/QC) is an essential element of a breeding program's optimization efforts towards increased genetic gains. Due to auto-hexaploid genome complexity, a low-cost marker platform for routine QA/QC in sweetpotato breeding programs is still unavailable. We used 662 parents of the International Potato Center (CIP)'s global breeding program spanning Peru, Uganda, Mozambique and Ghana, to develop a low-density highly informative single nucleotide polymorphism (SNP) marker set to be deployed for routine QA/QC. Segregation of the selected 30 SNPs (two SNPs per base chromosome) in a recombined breeding population was evaluated using 282 progeny from some of the parents above. The progeny were replicated from in-vitro, screenhouse and field, and the selected SNP-set was confirmed to identify relatively similar mislabeling error rates as a high density SNP-set of 10,159 markers. Six additional trait-specific markers were added to the selected SNP set from previous quantitative trait loci mapping studies. The 36-SNP set will be deployed for QA/QC in breeding pipelines and in fingerprinting of advanced clones or released varieties to monitor genetic gains in famers' fields. The study also enabled evaluation of CIP's global breeding population structure and the effect of some of the most devastating stresses like sweetpotato virus disease on genetic variation management. These results will inform future deployment of genomic selection in sweetpotato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA