Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602511

RESUMO

Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,ß-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,ß-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.

2.
J Chem Inf Model ; 64(15): 5991-6002, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993154

RESUMO

Mycobacterium tuberculosis is the single most important global infectious disease killer and a World Health Organization critical priority pathogen for development of new antimicrobials. M. tuberculosis DNA gyrase is a validated target for anti-TB agents, but those in current use target DNA breakage-reunion, rather than the ATPase activity of the GyrB subunit. Here, virtual screening, subsequently validated by whole-cell and enzyme inhibition assays, was applied to identify candidate compounds that inhibit M. tuberculosis GyrB ATPase activity from the Specs compound library. This approach yielded six compounds: four carbazole derivatives (1, 2, 3, and 8), the benzoindole derivative 11, and the indole derivative 14. Carbazole derivatives can be considered a new scaffold for M. tuberculosis DNA gyrase ATPase inhibitors. IC50 values of compounds 8, 11, and 14 (0.26, 0.56, and 0.08 µM, respectively) for inhibition of M. tuberculosis DNA gyrase ATPase activity are 5-fold, 2-fold, and 16-fold better than the known DNA gyrase ATPase inhibitor novobiocin. MIC values of these compounds against growth of M. tuberculosis H37Ra are 25.0, 3.1, and 6.2 µg/mL, respectively, superior to novobiocin (MIC > 100.0 µg/mL). Molecular dynamics simulations of models of docked GyrB:inhibitor complexes suggest that hydrogen bond interactions with GyrB Asp79 are crucial for high-affinity binding of compounds 8, 11, and 14 to M. tuberculosis GyrB for inhibition of ATPase activity. These data demonstrate that virtual screening can identify known and new scaffolds that inhibit both M. tuberculosis DNA gyrase ATPase activity in vitro and growth of M. tuberculosis bacteria.


Assuntos
Antituberculosos , DNA Girase , Indóis , Mycobacterium tuberculosis , Inibidores da Topoisomerase II , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , DNA Girase/metabolismo , DNA Girase/química , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Indóis/farmacologia , Indóis/química , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química
3.
Chembiochem ; 24(20): e202300268, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37199473

RESUMO

Here we describe a novel catalyst-free 1,3-dipolar cycloaddition bioconjugation approach for chemical modification of proteins. The dehydroalanine (Dha)-containing protein reacts with nitrile oxides generated in situ through 1,3-dipolar cycloaddition in fully aqueous-buffered systems. This leads to the formation of a new isoxazoline ring at a pre-defined site (Dha) of the protein. Furthermore, the 1-pyrene isoxazoline-installed annexin V acts as a fluorescent probe, which successfully labels the outer cellular membranes of human cholangiocarcinoma (HuCCA-1) cells for detection of apoptosis.


Assuntos
Nitrilas , Óxidos , Humanos , Reação de Cicloadição , Catálise
4.
J Chem Inf Model ; 63(9): 2707-2718, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074047

RESUMO

Mutations in DNA gyrase confer resistance to fluoroquinolones, second-line antibiotics for Mycobacterium tuberculosis infections. Identification of new agents that inhibit M. tuberculosis DNA gyrase ATPase activity is one strategy to overcome this. Here, bioisosteric designs using known inhibitors as templates were employed to define novel inhibitors of M. tuberculosis DNA gyrase ATPase activity. This yielded the modified compound R3-13 with improved drug-likeness compared to the template inhibitor that acted as a promising ATPase inhibitor against M. tuberculosis DNA gyrase. Utilization of compound R3-13 as a virtual screening template, supported by subsequent biological assays, identified seven further M. tuberculosis DNA gyrase ATPase inhibitors with IC50 values in the range of 0.42-3.59 µM. The most active compound 1 showed an IC50 value of 0.42 µM, 3-fold better than the comparator ATPase inhibitor novobiocin (1.27 µM). Compound 1 showed noncytotoxicity to Caco-2 cells at concentrations up to 76-fold higher than its IC50 value. Molecular dynamics simulations followed by decomposition energy calculations identified that compound 1 occupies the binding pocket utilized by the adenosine group of the ATP analogue AMPPNP in the M. tuberculosis DNA gyrase GyrB subunit. The most prominent contribution to the binding of compound 1 to M. tuberculosis GyrB subunit is made by residue Asp79, which forms two hydrogen bonds with the OH group of this compound and also participates in the binding of AMPPNP. Compound 1 represents a potential new scaffold for further exploration and optimization as a M. tuberculosis DNA gyrase ATPase inhibitor and candidate anti-tuberculosis agent.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , DNA Girase/química , Adenilil Imidodifosfato/uso terapêutico , Adenosina Trifosfatases/química , Células CACO-2 , Antituberculosos/farmacologia , Antituberculosos/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/uso terapêutico , DNA
5.
J Proteome Res ; 21(10): 2481-2492, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36154058

RESUMO

The combination of ion mobility mass spectrometry (IM-MS) and chromatography is a valuable tool for identifying compounds in natural products. In this study, using an ultra-performance liquid chromatography system coupled to a high-resolution quadrupole/traveling wave ion mobility spectrometry/time-of-flight MS (UPLC-TWIMS-QTOF), we have established and validated a comprehensive TWCCSN2 and MS database for 112 plant specialized metabolites. The database included 15 compounds that were isolated and purified in-house and are not commercially available. We obtained accurate m/z, retention times, fragment ions, and TWIMS-derived CCS (TWCCSN2) values for 207 adducts (ESI+ and ESI-). The database included novel 158 TWCCSN2 values from 79 specialized metabolites. In the presence of plant matrix, the CCS measurement was reproducible and robust. Finally, we demonstrated the application of the database to extend the metabolite coverage of Ventilago harmandiana Pierre. In addition to pyranonaphthoquinones, a group of known specialized metabolites in V. harmandiana, we identified flavonoids, xanthone, naphthofuran, and protocatechuic acid for the first time through targeted analysis. Interestingly, further investigation using IM-MS of unknown features suggested the presence of organonitrogen compounds and lipid and lipid-like molecules, which is also reported for the first time. Data are available on the MassIVE (https://massive.ucsd.edu, data set identifier MSV000090213).


Assuntos
Produtos Biológicos , Rhamnaceae , Xantonas , Flavonoides , Íons/química , Lipídeos , Espectrometria de Massas/métodos
6.
Proteins ; 90(3): 898-904, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677871

RESUMO

3-Nitropropanoic acid (3NP), a bioactive fungal natural product, was previously demonstrated to inhibit growth of Mycobacterium tuberculosis. Here we demonstrate that 3NP inhibits the 2-trans-enoyl-acyl carrier protein reductase (InhA) from Mycobacterium tuberculosis with an IC50 value of 71 µM, and present the crystal structure of the ternary InhA-NAD+ -3NP complex. The complex contains the InhA substrate-binding loop in an ordered, open conformation with Tyr158, a catalytically important residue whose orientation defines different InhA substrate/inhibitor complex conformations, in the "out" position. 3NP occupies a hydrophobic binding site adjacent to the NAD+ cofactor and close to that utilized by the diphenyl ether triclosan, but binds predominantly via electrostatic and water-mediated hydrogen-bonding interactions with the protein backbone and NAD+ cofactor. The identified mode of 3NP binding provides opportunities to improve inhibitory activity toward InhA.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/química , Nitrocompostos/química , Oxirredutases/antagonistas & inibidores , Propionatos/química , Sítios de Ligação , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , NAD/química , Éteres Fenílicos/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
7.
J Chem Inf Model ; 62(24): 6508-6518, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35994014

RESUMO

Mycobacterium tuberculosis protein kinase B (PknB) is essential to mycobacterial growth and has received considerable attention as an attractive target for novel anti-tuberculosis drug development. Here, virtual screening, validated by biological assays, was applied to select candidate inhibitors of M. tuberculosis PknB from the Specs compound library (www.specs.net). Fifteen compounds were identified as hits and selected for in vitro biological assays, of which three indoles (2, AE-848/42799159; 4, AH-262/34335013; 10, AP-124/40904362) inhibited growth of M. tuberculosis H37Rv with minimal inhibitory concentrations of 6.2, 12.5, and 6.2 µg/mL, respectively. Two compounds, 2 and 10, inhibited M. tuberculosis PknB activity in vitro, with IC50 values of 14.4 and 12.1 µM, respectively, suggesting this to be the likely basis of their anti-tubercular activity. In contrast, compound 4 displayed anti-tuberculosis activity against M. tuberculosis H37Rv but showed no inhibition of PknB activity (IC50 > 128 µM). We hypothesize that hydrolysis of its ethyl ester to a carboxylate moiety generates an active species that inhibits other M. tuberculosis enzymes. Molecular dynamics simulations of modeled complexes of compounds 2, 4, and 10 bound to M. tuberculosis PknB indicated that compound 4 has a lower affinity for M. tuberculosis PknB than compounds 2 and 10, as evidenced by higher calculated binding free energies, consistent with experiment. Compounds 2 and 10 therefore represent candidate inhibitors of M. tuberculosis PknB that provide attractive starting templates for optimization as anti-tubercular agents.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico , Fosforilação
8.
J Chem Inf Model ; 62(7): 1680-1690, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35347987

RESUMO

Mycobacterium tuberculosis DNA gyrase manipulates the DNA topology using controlled breakage and religation of DNA driven by ATP hydrolysis. DNA gyrase has been validated as the enzyme target of fluoroquinolones (FQs), second-line antibiotics used for the treatment of multidrug-resistant tuberculosis. Mutations around the DNA gyrase DNA-binding site result in the emergence of FQ resistance in M. tuberculosis; inhibition of DNA gyrase ATPase activity is one strategy to overcome this. Here, virtual screening, subsequently validated by biological assays, was applied to select candidate inhibitors of the M. tuberculosis DNA gyrase ATPase activity from the Specs compound library (www.specs.net). Thirty compounds were identified and selected as hits for in vitro biological assays, of which two compounds, G24 and G26, inhibited the growth of M. tuberculosis H37Rv with a minimal inhibitory concentration of 12.5 µg/mL. The two compounds inhibited DNA gyrase ATPase activity with IC50 values of 2.69 and 2.46 µM, respectively, suggesting this to be the likely basis of their antitubercular activity. Models of complexes of compounds G24 and G26 bound to the M. tuberculosis DNA gyrase ATP-binding site, generated by molecular dynamics simulations followed by pharmacophore mapping analysis, showed hydrophobic interactions of inhibitor hydrophobic headgroups and electrostatic and hydrogen bond interactions of the polar tails, which are likely to be important for their inhibition. Decreasing compound lipophilicity by increasing the polarity of these tails then presents a likely route to improving the solubility and activity. Thus, compounds G24 and G26 provide attractive starting templates for the optimization of antitubercular agents that act by targeting DNA gyrase.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Adenosina Trifosfatases , Trifosfato de Adenosina , Antituberculosos/química , Antituberculosos/farmacologia , DNA Girase/química , Humanos , Testes de Sensibilidade Microbiana , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Tuberculose/tratamento farmacológico
9.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055133

RESUMO

Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 µM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 2/fisiologia , Micromonospora/química , Peptídeos/farmacologia , Animais , Antivirais/química , Antivirais/isolamento & purificação , Chlorocebus aethiops , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Prepúcio do Pênis/citologia , Prepúcio do Pênis/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Masculino , Estrutura Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Células Vero , Liberação de Vírus/efeitos dos fármacos
10.
Org Biomol Chem ; 19(34): 7390-7402, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34296730

RESUMO

Here we reveal a simple generation of deuterium halide (DX) from common and inexpensive reagents readily available in a synthetic chemistry laboratory, i.e. prenyl-, allyl-, and propargyl halides, under mild conditions. We envisaged that in situ generation of an acid, deuterium halide, would be useful for acid-catalyzed reactions and could be employed for organocatalytic deuteration. The present work reports a metal-free method for deuterium labeling covering a broad range of substrate including phenolic compounds (i.e. flavonoids and stilbenes), indoles, pyrroles, carbonyl compounds, and steroids. This method was also applied for commonly used drugs such as loxoprofen, haloperidol, stanolone, progesterone, androstenedione, donepezil, ketorolac, adrenosterone, cortisone, pregnenolone, and dexamethasone. A gram-scale chromatography-free synthesis of some deuterated compounds is demonstrated in this work. This work provides a simple, clean and by-product-free, site-selective deuteration, and the deuterated products are obtained without chromatographic separation. When applying these initiators for other acid-catalyzed reactions, the deuterium isotope effects of DX may provide products which are different from those obtained from reactions using common acids. Although the mechanism of the spontaneous transformation of prenyl halides to acid is unclear, this overlooked chemistry may be useful for many reactions.

11.
J Nat Prod ; 84(6): 1738-1747, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34110821

RESUMO

Investigation of bioactive compounds from the rhizomes of Kaempferia elegans led to the isolation and characterization of ten new diterpenoids, namely, five 12,13-seco-diterpenoids named elegansins A-E (1-5) and five new abietanes, elegansols A-E (6-10), together with seven known diterpenoids (11-17). The structure elucidation of the new compounds was achieved by HRESIMS, NMR, and ECD spectroscopic analysis. Compounds (1-5) are the first examples of 12,13-seco-diterpenoid-type compounds representing a decalin fused dihydropyran skeleton. Plausible biosynthetic pathways for compounds 1-5 are proposed. Aromatase inhibitory activities of all compounds were evaluated, and abieta-8,11,13-trien-11-ol (16) was found to be the most potent aromatase inhibitor with an IC50 value of 3.7 µM.


Assuntos
Inibidores da Aromatase/farmacologia , Diterpenos/farmacologia , Zingiberaceae/química , Abietanos/isolamento & purificação , Inibidores da Aromatase/isolamento & purificação , Linhagem Celular Tumoral , Diterpenos/isolamento & purificação , Humanos , Estrutura Molecular , Rizoma/química , Tailândia
12.
Magn Reson Chem ; 59(5): 534-539, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31379005

RESUMO

The indolocarbazole family of bisindole alkaloids is best known for the natural product staurosporine, a protein kinase C inhibitor that belongs to the indolo[2,3-a]carbazole structural class. A large number of other indolo[2,3-a]carbazoles have subsequently been isolated and identified, but other isomeric forms of indolocarbazole natural products have rarely been reported. An extract of the marine sponge Damiria sp., which represents an understudied genus, provided two novel alkaloids named damirines A (1) and B (2). Their structures were assigned by comprehensive NMR spectroscopic analyses, and for compound 2, this included application of the LR-HSQMBC pulse sequence, a long-range heteronuclear correlation experiment that has particular utility for defining proton-deficient scaffolds. The damirines represent a new hexacyclic carbon-nitrogen framework comprised of an indolo[3,2-a]carbazole fused with either an aminoimidazole or a imidazolone ring. Compound 1 showed selective cytotoxic properties toward six different cell lines in the NCI-60 cancer screen.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Carbazóis/farmacologia , Alcaloides Indólicos/farmacologia , Poríferos/química , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Carbazóis/química , Carbazóis/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estereoisomerismo
13.
J Chem Inf Model ; 60(1): 226-234, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31820972

RESUMO

The enoyl-acyl carrier protein reductase InhA of Mycobacterium tuberculosis is an attractive, validated target for antituberculosis drug development. Moreover, direct inhibitors of InhA remain effective against InhA variants with mutations associated with isoniazid resistance, offering the potential for activity against MDR isolates. Here, structure-based virtual screening supported by biological assays was applied to identify novel InhA inhibitors as potential antituberculosis agents. High-speed Glide SP docking was initially performed against two conformations of InhA differing in the orientation of the active site Tyr158. The resulting hits were filtered for drug-likeness based on Lipinski's rule and avoidance of PAINS-like properties and finally subjected to Glide XP docking to improve accuracy. Sixteen compounds were identified and selected for in vitro biological assays, of which two (compounds 1 and 7) showed MIC of 12.5 and 25 µg/mL against M. tuberculosis H37Rv, respectively. Inhibition assays against purified recombinant InhA determined IC50 values for these compounds of 0.38 and 0.22 µM, respectively. A crystal structure of the most potent compound, compound 7, bound to InhA revealed the inhibitor to occupy a hydrophobic pocket implicated in binding the aliphatic portions of InhA substrates but distant from the NADH cofactor, i.e., in a site distinct from those occupied by the great majority of known InhA inhibitors. This compound provides an attractive starting template for ligand optimization aimed at discovery of new and effective compounds against M. tuberculosis that act by targeting InhA.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Antituberculosos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
14.
Bioorg Chem ; 92: 103197, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445193

RESUMO

Vernonia extensa, known as "Phim Phai Lin" in Thai, is distributed in most regions of Thailand. The plant has been used in Ayurveda and traditionally used to treat malaria and cancer, and possesses several sesquiterpene lactones. This study aimed to investigate and identify the active constituents by bioactivity-based analysis, as well as to evaluate the cytotoxic activity of V. extensa by MTT or XTT assays in ten cancer cell lines (Liver HepG2 and S102; Bile duct HuCCA-1; Leukemia HL-60 and MOLT-3; Lung A549 and H69AR; Breast MDA-MB-231 and T47D; Cervical HeLa). Bioactivity-guided fractionation and semi-preparative HPLC purification were used to separate the bioactive constituents. Apoptosis-inducing activity and cell cycle inhibitory effect of selected active compounds were determined on HepG2 cells by flow cytometric analysis. Bioactivity-guided fractionation of the CH2Cl2 extract and chemical investigation of the cytotoxic fractions led to the isolation of a new sesquiterpenoid pseudo-dimer named vernodalidimer L, together with eight known sesquiterpenoids from the aerial part of V. extensa. The structures of the isolates were elucidated based on spectroscopic analysis, including 1D and 2D NMR and HRMS. Vernolide has potent broad-spectrum cytotoxicity with IC50 values in the range of 0.91-13.84 µM, against all ten cancer cell lines. The annexin-V flow cytometric analysis showed that vernodalin, vernolepin, and vernolide induced apoptosis on HepG2 cells in a dose dependent manner and these effects correlated with G2/M phase cell cycle arrest. Our results indicated that vernodalin, vernolepin, and vernolide have potential to be used as lead compounds in the development of a therapeutic natural product for treatment of liver cancer.


Assuntos
Antineoplásicos Fitogênicos/química , Lactonas/química , Extratos Vegetais/química , Sesquiterpenos/química , Vernonia/química , Anexinas/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lactonas/farmacologia , Estrutura Molecular , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Relação Estrutura-Atividade
15.
Chem Biodivers ; 15(3): e1700537, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29325221

RESUMO

New naphthalene derivatives (1 and 2) and a new isomer (3) of ventilagolin, together with known anthraquinones, chrysophanol (4), physcion or emodin 3-methyl ether (5), and emodin (6), were isolated from vines of Ventilago denticulata. The isolated compounds exhibited cytotoxic activity with IC50 values of 1.15 - 40.54 µg/ml. Compounds 1 - 3 selectively exhibited weak antibacterial activity (MIC values of 200.0 - 400.0 µg/ml), while emodin (6) displayed moderate antibacterial activity with MIC value of 25.0 µg/ml. The isolated compounds showed nitric oxide and DPPH radical scavenging activities. Compounds 1 - 3 and 6 exhibited weak xanthine oxidase inhibitory activity, while emodin (6) acted as an aromatase inhibitor with the IC50 value of 10.1 µm. Compounds 1 and 2 exhibited phosphodiesterase 5 inhibitory activity with IC50 values of 8.28 µm and 6.48 µm, respectively.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Naftalenos/farmacologia , Quinonas/farmacologia , Rhamnaceae/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Naftalenos/química , Naftalenos/isolamento & purificação , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Quinonas/química , Quinonas/isolamento & purificação , Relação Estrutura-Atividade , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
16.
Bioorg Med Chem ; 25(11): 2868-2877, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28366267

RESUMO

The endophytic fungus, Dothideomycete sp. CRI7, isolated from the terrestrial plant, Tiliacora triandra, was salt tolerant, capable of growing in the culture medium prepared from seawater; salts in seawater did not have any effects on the fungal growth. Metabolite productions of the fungus CRI7 cultivated in media prepared from seawater (MSW), prepared from deionized water supplemented with potassium bromide (MKBr) or potassium iodide (MKI), and prepared from deionized water (MDW) were investigated. It was found that the cultivation of the fungus CRI7 in MKBr and MSW enabled the fungus to produce nine new metabolites (1-9). The production of an azaphilone, austdiol (10), of the fungus CRI7 grown in MDW was 0.04g/L, which was much lower than that grown in MSW, MKBr, and MKI media which provided the yields of 0.5, 0.9, and 1.2g/L, respectively, indicating that halogen salts significantly enhanced the production of the polyketide 10. The cultivation of terrestrial fungi in media containing halogen salts could therefore be useful for the metabolite diversification by one strain-many compounds (OSMAC) approach. Moreover, the isolated polyketides had significant biosynthetic relationship, suggesting that the cultivation of fungi in halogen containing media could provide the insights into certain polyketide biosynthesis. One of the isolated compounds exhibited antibacterial activity with the MIC value of 100µg/mL.


Assuntos
Ascomicetos/metabolismo , Meios de Cultura/química , Halogênios/química , Água do Mar/química , Ascomicetos/crescimento & desenvolvimento
17.
Angew Chem Int Ed Engl ; 55(12): 3997-4001, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26914177

RESUMO

Conventional methods generate nitrile oxides from oxime halides in organic solvents under basic conditions. However, the present work revealed that water-assisted generation of nitrile oxides proceeds under mild acidic conditions (pH 4-5). Cycloadditions of nitrile oxides with alkynes and alkenes easily occurred in water without using catalysts, thus yielding isoxazoles and isoxazolines, respectively, with excellent stereoselectivity toward five- and six-membered cyclic alkenes. A double stereoselective cycloaddition of two units of a nitrile oxide with cyclohexene was also achieved, thus yielding 1,2,4-oxadiazole derivatives having a unique hybrid isoxazoline-oxadiazole skeleton. Enantiomerically pure isoxazolines were prepared from monoterpenes with a ring strain. In one case, the isoxazoline with a butterfly-like structure was simply prepared, and it might be used as a ligand in asymmetric catalysis.

18.
Mar Drugs ; 13(6): 3567-80, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26058010

RESUMO

Four new sesquiterpene lactones (3, 4, 6 and 7) and three known compounds, purpuride (1), berkedrimane B (2) and purpuride B (5), were isolated from the marine fungus, Talaromyces minioluteus (Penicillium minioluteum). New compounds were drimane sesquiterpenes conjugated with N-acetyl-l-valine, and their structures were elucidated by analysis of spectroscopic data, as well as by single crystal X-ray analysis. The isolated compounds could not inhibit the apoptosis-regulating enzyme, caspase-3, while three of the compounds (2, 3 and 7) exhibited weak cytotoxic activity.


Assuntos
Lactonas/farmacologia , Penicillium/química , Sesquiterpenos/farmacologia , Talaromyces/química , Aminoácidos/química , Cristalografia por Raios X , Humanos , Lactonas/química , Lactonas/isolamento & purificação , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Análise Espectral
19.
Planta Med ; 80(7): 604-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24782227

RESUMO

Three new isoflavanones (1-3) and thirteen known compounds (4-16) were isolated from the roots of Mucuna pruriens. The absolute configurations of isoflavanones 1-3 and parvisoflavanone (4), lespedeol C (5), and uncinanone C (6) were addressed by a circular dichroism technique. Isoflavanones, isoflavones, and pterocarpans of M. pruriens were found to be α-glucosidase inhibitors. Medicarpin (7) and parvisoflavone B (9) were potent α-glucosidase inhibitors (twofold less active than the standard drug acarbose). The production of bioactive metabolites in M. pruriens seems to be season-dependent.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Isoflavonas/farmacologia , Mucuna/química , Extratos Vegetais/farmacologia , Pterocarpanos/farmacologia , alfa-Glucosidases/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Isoflavonas/química , Isoflavonas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Plantas Medicinais , Pterocarpanos/química , Pterocarpanos/isolamento & purificação , Estações do Ano , alfa-Glucosidases/metabolismo
20.
Org Lett ; 26(27): 5614-5619, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38953701

RESUMO

Although various types of asymmetric cyclization reactions of 1,6-enynes have been established, simple asymmetric reductive cyclization remains underdeveloped. In this study, the enantioselective reductive cyclization of alkynyl-tethered cyclohexadienones (1,6-enynes) has been developed via a chiral pincer rhodium catalyst, affording cis-hydrobenzofurans and cis-hydroindoles with high enantioselectivities (90-99% ee). Furthermore, several synthetic applications and preliminary inhibitory activity studies against SARS-CoV-2 3CLpro are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA