Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(22): e0121922, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286524

RESUMO

Acetylene (C2H2) is a molecule rarely found in nature, with very few known natural sources, but acetylenotrophic microorganisms can use acetylene as their primary carbon and energy source. As of 2018 there were 15 known strains of aerobic and anaerobic acetylenotrophs; however, we hypothesize there may yet be unrecognized diversity of acetylenotrophs in nature. This study expands the known diversity of acetylenotrophs by isolating the aerobic acetylenotroph, Bradyrhizobium sp. strain I71, from trichloroethylene (TCE)-contaminated soils. Strain I71 is a member of the class Alphaproteobacteria and exhibits acetylenotrophic and diazotrophic activities, the only two enzymatic reactions known to transform acetylene. This unique capability in the isolated strain may increase the genus' economic impact beyond agriculture as acetylenotrophy is closely linked to bioremediation of chlorinated contaminants. Computational analyses indicate that the Bradyrhizobium sp. strain I71 genome contains 522 unique genes compared to close relatives. Moreover, applying a novel hidden Markov model of known acetylene hydratase (AH) enzymes identified a putative AH enzyme. Protein annotation with I-TASSER software predicted the AH from the microbe Syntrophotalea acetylenica as the closest structural and functional analog. Furthermore, the putative AH was flanked by horizontal gene transfer (HGT) elements, like that of AH in anaerobic acetylenotrophs, suggesting an unknown source of acetylene or acetylenic substrate in the environment that is selecting for the presence of AH. IMPORTANCE The isolation of Bradyrhizobium strain I71 expands the distribution of acetylene-consuming microbes to include a group of economically important microorganisms. Members of Bradyrhizobium are well studied for their abilities to improve plant health and increase crop yields by providing bioavailable nitrogen. Additionally, acetylene-consuming microbes have been shown to work in tandem with other microbes to degrade soil contaminants. Based on genome, cultivation, and protein prediction analysis, the ability to consume acetylene is likely not widespread within the genus Bradyrhizobium. These findings suggest that the suite of phenotypic capabilities of strain I71 may be unique and make it a good candidate for further study in several research avenues.


Assuntos
Bradyrhizobium , Tricloroetileno , Tricloroetileno/metabolismo , Fixação de Nitrogênio/genética , Solo/química , Acetileno/metabolismo , Filogenia , Simbiose , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , DNA Bacteriano/genética , Análise de Sequência de DNA
2.
Appl Microbiol Biotechnol ; 106(3): 1313-1324, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032186

RESUMO

Wastewater treatment using aerobic granular sludge has gained increasing interest due to its advantages compared to conventional activated sludge. The technology allows simultaneous removal of organic carbon, nitrogen, and phosphorus in a single reactor system and is independent of space-intensive settling tanks. However, due to the microscale, an analysis of processes and microbial population along the radius of granules is challenging. Here, we introduce a model system for aerobic granular sludge on a small scale by using a machine-assisted microfluidic cultivation platform. With an implemented logic module that controls solenoid valves, we realized alternating oxic hunger and anoxic feeding phases for the biofilms growing within. Sampling during ongoing anoxic cultivation directly from the cultivation channel was achieved with a robotic sampling device. Analysis of the biofilms was conducted using optical coherence tomography, fluorescence in situ hybridization, and amplicon sequencing. Using this setup, it was possible to significantly enrich the percentage of polyphosphate-accumulating organisms (PAO) belonging to the family Rhodocyclaceae in the community compared to the starting inoculum. With the aid of this miniature model system, it is now possible to investigate the influence of a multitude of process parameters in a highly parallel way to understand and efficiently optimize aerobic granular sludge-based wastewater treatment systems.Key points• Development of a microfluidic model to study EBPR.• Feast-famine regime enriches polyphosphate-accumulating organisms (PAOs).• Microfluidics replace sequencing batch reactors for aerobic granular sludge research.


Assuntos
Microfluídica , Esgotos , Biofilmes , Reatores Biológicos , Hibridização in Situ Fluorescente , Fósforo , Polifosfatos , Eliminação de Resíduos Líquidos
3.
Biofilm ; 7: 100193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38601817

RESUMO

Microbial electrochemical systems are a highly versatile platform technology with a particular focus on the interplay of chemical and electrical energy conversion and offer immense potential for a sustainable bioeconomy. The industrial realization of this potential requires a critical focus on biofilm optimization if performance is to be controlled over a long period of time. Moreover, the aspect and influence of cooperativity has to be addressed as many applied anodic bioelectrochemical systems will most likely be operated with a diversity of interacting microbial species. Hence, the aim of this study was to analyze how interspecies dependence and cooperativity of a model community influence the development of anodic biofilms. To investigate biofilm activity in a spatially resolved manner, a microfluidic bioelectrochemical flow cell was developed that can be equipped with user-defined electrode materials and operates under laminar flow conditions. With this infrastructure, the development of single and co-culture biofilms of the two model organisms Shewanella oneidensis and Geobacter sulfurreducens on graphite electrodes was monitored by optical coherence tomography analysis. The interdependence in the co-culture biofilm was achieved by feeding the community with lactate, which is converted by S. oneidensis into acetate, which in turn serves as substrate for G. sulfurreducens. The results show that co-cultivation resulted in the formation of denser biofilms than in single culture. Moreover, we hypothesize that S. oneidensis in return utilizes the conductive biofilm matrix build by G. sulfurreducens for direct interspecies electron transfer (DIET) to the anode. FISH analysis revealed that the biofilms consisted of approximately two-thirds G. sulfurreducens cells, which most likely formed a conductive 3D network throughout the biofilm matrix, in which evenly distributed tubular S. oneidensis colonies were embedded without direct contact to the anode surface. Live/dead staining shows that the outermost biofilm contained almost exclusively dead cells (98 %), layers near the anode contained 45-56 % and the entire biofilm contained 82 % live cells. Our results exemplify how the architecture of the exoelectrogenic biofilm dynamically adapts to the respective process conditions.

4.
Microb Biotechnol ; 16(6): 1179-1202, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808480

RESUMO

Microbial electrochemical systems (MESs) are a highly versatile platform technology with a particular focus on power or energy production. Often, they are used in combination with substrate conversion (e.g., wastewater treatment) and production of value-added compounds via electrode-assisted fermentation. This rapidly evolving field has seen great improvements both technically and biologically, but this interdisciplinarity sometimes hampers overseeing strategies to increase process efficiency. In this review, we first briefly summarize the terminology of the technology and outline the biological background that is essential for understanding and thus improving MES technology. Thereafter, recent research on improvements at the biofilm-electrode interface will be summarized and discussed, distinguishing between biotic and abiotic approaches. The two approaches are then compared, and resulting future directions are discussed. This mini-review therefore provides basic knowledge of MES technology and the underlying microbiology in general and reviews recent improvements at the bacteria-electrode interface.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Bactérias/genética , Fermentação , Eletrodos , Purificação da Água/métodos
5.
ACS Appl Mater Interfaces ; 12(13): 14806-14813, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191028

RESUMO

The use of living microorganisms integrated within electrochemical devices is an expanding field of research, with applications in microbial fuel cells, microbial biosensors or bioreactors. We describe the use of porous nanocomposite materials prepared by DNA polymerization of carbon nanotubes (CNTs) and silica nanoparticles (SiNPs) for the construction of a programmable biohybrid system containing the exoelectrogenic bacterium Shewanella oneidensis. We initially demonstrate the electrical conductivity of the CNT-containing DNA composite by employment of chronopotentiometry, electrochemical impedance spectroscopy, and cyclic voltammetry. Cultivation of Shewanella oneidensis in the conductive materials shows that the exoelectrogenic bacteria populate the matrix of the conductive composite, while nonexoelectrogenic Escherichia coli remain on its surface. Moreover, the ability to use extracellular electron transfer pathways is positively correlated with the number of cells within the conductive synthetic biofilm matrix. The Shewanella-containing composite remains stable for several days and shows electrochemical activity, indicating that the conductive backbone is capable of extracting the metabolic electrons produced by the bacteria under strictly anoxic conditions and conducting them to the anode. Programmability of this biohybrid material system is demonstrated by on-demand release and degradation induced by a short-term enzymatic stimulus. We believe that the application possibilities of such biohybrid materials could even go beyond microbial biosensors, bioreactors, and fuel cell systems.


Assuntos
DNA/química , Hidrogéis/química , Nanocompostos/química , Shewanella/crescimento & desenvolvimento , DNA/metabolismo , Espectroscopia Dielétrica , Transporte de Elétrons , Elétrons , Nanopartículas/química , Nanotubos de Carbono/química , Técnicas de Amplificação de Ácido Nucleico , Porosidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA