RESUMO
From our recent theory based on the generation of shear flow and field in finite beta plasmas, the criterion for bifurcation from low to high confinement mode yields a critical parameter proportional to T(e)/square root (L(n)), where T(e) is the electron temperature and L(n) is the density scale length. The predicted threshold shows very good agreement with edge measurements on discharges undergoing low-to-high transitions in DIII-D. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter. The theory also provides an explanation for pellet injection H modes in DIII-D, thereby unifying unconnected methods for accomplishing the transition.
RESUMO
The understanding of low to high (L-H) transition in tokamaks has been an important area of investigation for more than a decade. Recent 3D finite beta simulations of drift-resistive ballooning modes in a flux tube geometry by Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)] have provided a unique parametrization of the transition in a two-dimensional phase space. Comparison of the threshold curve in this phase space with data from ASDEX and C-MOD has shown very good agreement. In this Letter we provide a simple theory, based on the generation of zonal flow and zonal magnetic field in a finite-beta plasma, which explains this threshold curve for L-H transition in tokamaks.