Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
PLoS Genet ; 20(8): e1011071, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102428

RESUMO

Sortase-assembled pili contribute to virulence in many Gram-positive bacteria. In Enterococcus faecalis, the endocarditis and biofilm-associated pilus (Ebp) is polymerized on the membrane by sortase C (SrtC) and attached to the cell wall by sortase A (SrtA). In the absence of SrtA, polymerized pili remain anchored to the membrane (i.e. off-pathway). Here we show that the high temperature requirement A (HtrA) bifunctional chaperone/protease of E. faecalis is a quality control system that clears aberrant off-pathway pili from the cell membrane. In the absence of HtrA and SrtA, accumulation of membrane-bound pili leads to cell envelope stress and partially induces the regulon of the ceftriaxone resistance-associated CroRS two-component system, which in turn causes hyper-piliation and cell morphology alterations. Inactivation of croR in the OG1RF ΔsrtAΔhtrA background partially restores the observed defects of the ΔsrtAΔhtrA strain, supporting a role for CroRS in the response to membrane perturbations. Moreover, absence of SrtA and HtrA decreases basal resistance of E. faecalis against cephalosporins and daptomycin. The link between HtrA, pilus biogenesis and the CroRS two-component system provides new insights into the E. faecalis response to endogenous membrane perturbations.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Biofilmes , Cisteína Endopeptidases , Enterococcus faecalis , Fímbrias Bacterianas , Chaperonas Moleculares , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Enterococcus faecalis/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Virulência/genética , Antibacterianos/farmacologia , Ceftriaxona/farmacologia
2.
Mol Microbiol ; 121(5): 1021-1038, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527904

RESUMO

Daptomycin is a last-line antibiotic commonly used to treat vancomycin-resistant Enterococci, but resistance evolves rapidly and further restricts already limited treatment options. While genetic determinants associated with clinical daptomycin resistance (DAPR) have been described, information on factors affecting the speed of DAPR acquisition is limited. The multiple peptide resistance factor (MprF), a phosphatidylglycerol-modifying enzyme involved in cationic antimicrobial resistance, is linked to DAPR in pathogens such as methicillin-resistant Staphylococcus aureus. Since Enterococcus faecalis encodes two paralogs of mprF and clinical DAPR mutations do not map to mprF, we hypothesized that functional redundancy between the paralogs prevents mprF-mediated resistance and masks other evolutionary pathways to DAPR. Here, we performed in vitro evolution to DAPR in mprF mutant background. We discovered that the absence of mprF results in slowed DAPR evolution and is associated with inactivating mutations in ftsH, resulting in the depletion of the chaperone repressor HrcA. We also report that ftsH is essential in the parental, but not in the ΔmprF, strain where FtsH depletion results in growth impairment in the parental strain, a phenotype associated with reduced extracellular acidification and reduced ability for metabolic reduction. This presents FtsH and HrcA as enticing targets for developing anti-resistance strategies.


Assuntos
Daptomicina , Enterococcus faecalis , Peptídeo Hidrolases , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/metabolismo , Enterococcus faecalis/enzimologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética
3.
Mol Microbiol ; 119(1): 1-18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420961

RESUMO

Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.


Assuntos
Aminoaciltransferases , Proteínas de Fímbrias , Proteínas de Fímbrias/metabolismo , Enterococcus faecalis/metabolismo , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Parede Celular/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo
4.
PLoS Pathog ; 18(9): e1010766, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067266

RESUMO

Wound infections are often polymicrobial in nature, biofilm associated and therefore tolerant to antibiotic therapy, and associated with delayed healing. Escherichia coli and Staphylococcus aureus are among the most frequently cultured pathogens from wound infections. However, little is known about the frequency or consequence of E. coli and S. aureus polymicrobial interactions during wound infections. Here we show that E. coli kills Staphylococci, including S. aureus, both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. Colibactin biosynthesis is encoded by the pks locus, which we identified in nearly 30% of human E. coli wound infection isolates. While it is not clear how colibactin is released from E. coli or how it penetrates target cells, we found that the colibactin intermediate N-myristoyl-D-Asn (NMDA) disrupts the S. aureus membrane. We also show that the BarA-UvrY two component system (TCS) senses the environment created during E. coli and S. aureus mixed species interaction, leading to upregulation of pks island genes. Further, we show that BarA-UvrY acts via the carbon storage global regulatory (Csr) system to control pks expression. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Proteínas de Membrana , Fosfotransferases , Policetídeos , Staphylococcus aureus , Fatores de Transcrição , Animais , Antibacterianos/metabolismo , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Mutagênicos/metabolismo , N-Metilaspartato/metabolismo , Peptídeos , Fosfotransferases/genética , Policetídeos/metabolismo , Staphylococcus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Transcrição/metabolismo , Infecção dos Ferimentos/microbiologia
5.
PLoS Pathog ; 18(4): e1010434, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35390107

RESUMO

Enterococcus faecalis is a frequent opportunistic pathogen of wounds, whose infections are associated with biofilm formation, persistence, and recalcitrance toward treatment. We have previously shown that E. faecalis wound infection persists for at least 7 days. Here we report that viable E. faecalis are present within both immune and non-immune cells at the wound site up to 5 days after infection, raising the prospect that intracellular persistence contributes to chronic E. faecalis infection. Using in vitro keratinocyte and macrophage infection models, we show that E. faecalis becomes internalized and a subpopulation of bacteria can survive and replicate intracellularly. E. faecalis are internalized into keratinocytes primarily via macropinocytosis into single membrane-bound compartments and can persist in late endosomes up to 24 h after infection in the absence of colocalization with the lysosomal protease Cathepsin D or apparent fusion with the lysosome, suggesting that E. faecalis blocks endosomal maturation. Indeed, intracellular E. faecalis infection results in heterotypic intracellular trafficking with partial or absent labelling of E. faecalis-containing compartments with Rab5 and Rab7, small GTPases required for the endosome-lysosome trafficking. In addition, E. faecalis infection results in marked reduction of Rab5 and Rab7 protein levels which may also contribute to attenuated Rab incorporation into E. faecalis-containing compartments. Finally, we demonstrate that intracellular E. faecalis derived from infected keratinocytes are significantly more efficient in reinfecting new keratinocytes. Together, these data suggest that intracellular proliferation of E. faecalis may contribute to its persistence in the face of a robust immune response, providing a primed reservoir of bacteria for subsequent reinfection.


Assuntos
Enterococcus faecalis , Proteínas rab de Ligação ao GTP , Animais , Endossomos/metabolismo , Enterococcus faecalis/metabolismo , Lisossomos/metabolismo , Mamíferos , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
6.
J Bacteriol ; 204(7): e0061521, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35758750

RESUMO

Enterococcus faecalis is often coisolated with Pseudomonas aeruginosa in polymicrobial biofilm-associated infections of wounds and the urinary tract. As a defense strategy, the host innately restricts iron availability at infection sites. Despite their coprevalence, the polymicrobial interactions of these two species in biofilms and under iron-restricted conditions remain unexplored. Here, we show that E. faecalis inhibits P. aeruginosa growth within biofilms when iron is restricted. E. faecalis lactate dehydrogenase (ldh1) gives rise to l-lactate production during fermentative growth. We find that an E. faecalis ldh1 mutant fails to inhibit P. aeruginosa growth. Additionally, we demonstrate that ldh1 expression is induced under iron-restricted conditions, resulting in increased lactic acid exported and, consequently, a reduction in local environmental pH. Together, our results suggest that E. faecalis synergistically inhibits P. aeruginosa growth by decreasing environmental pH and l-lactate-mediated iron chelation. Overall, this study emphasizes the importance of the microenvironment in polymicrobial interactions and how manipulating the microenvironment can impact the growth trajectory of bacterial communities. IMPORTANCE Many infections are polymicrobial and biofilm-associated in nature. Iron is essential for many metabolic processes and plays an important role in controlling infections, where the host restricts iron as a defense mechanism against invading pathogens. However, polymicrobial interactions between pathogens are underexplored under iron-restricted conditions. Here, we explore the polymicrobial interactions between commonly coisolated E. faecalis and P. aeruginosa within biofilms. We find that E. faecalis modulates the microenvironment by exporting lactic acid which further chelates already limited iron and also lowers the environmental pH to antagonize P. aeruginosa growth under iron-restricted conditions. Our findings provide insights into polymicrobial interactions between bacteria and how manipulating the microenvironment can be taken advantage of to better control infections.


Assuntos
Enterococcus faecalis , Pseudomonas aeruginosa , Biofilmes , Enterococcus faecalis/metabolismo , Ferro/metabolismo , Ácido Láctico/metabolismo , Pseudomonas aeruginosa/metabolismo
7.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32229614

RESUMO

Bacterial pathogens encounter a variety of nutritional environments in the human host, including nutrient metal restriction and overload. Uptake of manganese (Mn) is essential for Enterococcus faecalis growth and virulence; however, it is not known how this organism prevents Mn toxicity. In this study, we examine the role of the highly conserved MntE transporter in E. faecalis Mn homeostasis and virulence. We show that inactivation of mntE results in growth restriction in the presence of excess Mn, but not other metals, demonstrating its specific role in Mn detoxification. Upon growth in the presence of excess Mn, an mntE mutant accumulates intracellular Mn, iron (Fe), and magnesium (Mg), supporting a role for MntE in Mn and Fe export and a role for Mg in offsetting Mn toxicity. Growth of the mntE mutant in excess Fe also results in increased levels of intracellular Fe, but not Mn or Mg, providing further support for MntE in Fe efflux. Inactivation of mntE in the presence of excess iron also results in the upregulation of glycerol catabolic genes and enhanced biofilm growth, and addition of glycerol is sufficient to augment biofilm growth for both the mntE mutant and its wild-type parental strain, demonstrating that glycerol availability significantly enhances biofilm formation. Finally, we show that mntE contributes to colonization of the antibiotic-treated mouse gastrointestinal (GI) tract, suggesting that E. faecalis encounters excess Mn in this niche. Collectively, these findings demonstrate that the manganese exporter MntE plays a crucial role in E. faecalis metal homeostasis and virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus faecalis/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Manganês/metabolismo , Animais , Biofilmes , Transporte Biológico , Modelos Animais de Doenças , Trato Gastrointestinal/microbiologia , Homeostase , Espaço Intracelular/metabolismo , Manganês/toxicidade , Metais/metabolismo , Camundongos
8.
Cell Microbiol ; 21(1): e12956, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239106

RESUMO

Group A Streptococcus (GAS) is a human pathogen that causes infections ranging from mild to fulminant and life-threatening. Biofilms have been implicated in acute GAS soft-tissue infections such as necrotising fasciitis (NF). However, most in vitro models used to study GAS biofilms have been designed to mimic chronic infections and insufficiently recapitulate in vivo conditions along with the host-pathogen interactions that might influence biofilm formation. Here, we establish and characterise an in vitro model of GAS biofilm development on mammalian cells that simulates microcolony formation observed in a mouse model of human NF. We show that on mammalian cells, GAS forms dense aggregates that display hallmark biofilm characteristics including a 3D architecture and enhanced tolerance to antibiotics. In contrast to abiotic-grown biofilms, host-associated biofilms require the expression of secreted GAS streptolysins O and S (SLO, SLS) that induce endoplasmic reticulum (ER) stress in the host. In an in vivo mouse model, the streptolysin null mutant is attenuated in both microcolony formation and bacterial spread, but pretreatment of soft-tissue with an ER stressor restores the ability of the mutant to form wild-type-like microcolonies that disseminate throughout the soft tissue. Taken together, we have identified a new role of streptolysin-driven ER stress in GAS biofilm formation and NF disease progression.


Assuntos
Biofilmes/crescimento & desenvolvimento , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fasciite Necrosante/microbiologia , Streptococcus pyogenes/crescimento & desenvolvimento , Streptococcus pyogenes/metabolismo , Estreptolisinas/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Teóricos
9.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31085695

RESUMO

Biofilms play an important role in the pathogenesis of group A streptococcus (GAS), a Gram-positive pathogen responsible for a wide range of infections and with a significant public health impact. Although most GAS serotypes are able to form biofilms, there is a large amount of heterogeneity between individual strains in biofilm formation, as measured by standard crystal violet assays. It is generally accepted that biofilm formation includes the initial adhesion of bacterial cells to a surface followed by microcolony formation, biofilm maturation, and extensive production of extracellular matrix that links together proliferating cells and provides a scaffold for the three-dimensional (3D) biofilm structure. However, our studies show that for GAS strain JS95, microcolony formation is not an essential step in static biofilm formation, and instead, biofilm can be effectively formed from slow-growing or nonreplicating late-exponential- or early-stationary-phase planktonic cells via sedimentation and fixation of GAS chains. In addition, we show that the GAS capsule specifically contributes to the alternative sedimentation-initiated biofilms. Microcolony-independent sedimentation biofilms are similar in morphology and 3D structure to biofilms initiated by actively dividing planktonic bacteria. We conclude that GAS can form biofilms by an alternate noncanonical mechanism that does not require transition from microcolony formation to biofilm maturation and which may be obscured by biofilm phenotypes that arise via the classical biofilm maturation processes.IMPORTANCE The static biofilm assay is a common tool for easy biomass quantification of biofilm-forming bacteria. However, Streptococcus pyogenes biofilm formation as measured by the static assay is strain dependent and yields heterogeneous results for different strains of the same serotype. In this study, we show that two independent mechanisms, for which the protective capsule contributes opposing functions, may contribute to static biofilm formation. We propose that separation of these mechanisms for biofilm formation might uncover previously unappreciated biofilm phenotypes that may otherwise be masked in the classic static assay.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Streptococcus pyogenes/patogenicidade , Proteínas de Bactérias/metabolismo , Matriz Extracelular/metabolismo , Humanos , Streptococcus pyogenes/metabolismo
10.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30249706

RESUMO

Like many bacteria, Enterococcus faecalis encodes a number of adhesins involved in colonization or infection of different niches. Two well-studied E. faecalis adhesins, aggregation substance (AS) and endocarditis- and biofilm-associated pili (Ebp), both contribute to biofilm formation on abiotic surfaces and in endocarditis, suggesting that they may be expressed at the same time. Because different regulatory pathways have been reported for AS and Ebp, here, we examined if they are coexpressed on the same cells and what is the functional impact of coexpression on individual cells and within a population. We found that while Ebp are only expressed on a subset of cells, when Ebp and AS are expressed on the same cells, pili interfere with AS-mediated clumping and impede AS-mediated conjugative plasmid transfer during planktonic growth. However, when the population density increases, horizontal gene transfer rates normalize and are no longer affected by pilus expression. Instead, at higher cell densities during biofilm formation, Ebp and AS differentially contribute to biofilm development and structure, synergizing to promote maximal biofilm formation.IMPORTANCE Most bacteria express multiple adhesins that contribute to surface attachment and colonization. However, the network and relationships between the various adhesins of a single bacterial species are less well understood. Here, we examined two well-characterized adhesins in Enterococcus faecalis, aggregation substance and endocarditis- and biofilm-associated pili, and found that they exhibit distinct functional contributions depending on the growth stage of the bacterial community. Pili interfere with aggregation substance-mediated clumping and plasmid transfer under planktonic conditions, whereas the two adhesins structurally complement one another during biofilm development. This study advances our understanding of how E. faecalis, a ubiquitous member of the human gut microbiome and an opportunistic pathogen, uses multiple surface structures to evolve and thrive.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Enterococcus faecalis/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Biofilmes/crescimento & desenvolvimento , Endocardite Bacteriana/microbiologia , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , Transferência Genética Horizontal , Humanos , Feromônios/farmacologia
11.
J Am Chem Soc ; 140(47): 16140-16151, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30388366

RESUMO

New strategies are urgently needed to target MRSA, a major global health problem and the leading cause of mortality from antibiotic-resistant infections in many countries. Here, we report a general approach to this problem exemplified by the design and synthesis of a vancomycin-d-octaarginine conjugate (V-r8) and investigation of its efficacy in addressing antibiotic-insensitive bacterial populations. V-r8 eradicated MRSA biofilm and persister cells in vitro, outperforming vancomycin by orders of magnitude. It also eliminated 97% of biofilm-associated MRSA in a murine wound infection model and displayed no acute dermal toxicity. This new dual-function conjugate displays enhanced cellular accumulation and membrane perturbation as compared to vancomycin. Based on its rapid and potent activity against biofilm and persister cells, V-r8 is a promising agent against clinical MRSA infections.


Assuntos
Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Peptídeos Penetradores de Células/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/fisiologia , Vancomicina/análogos & derivados , Vancomicina/uso terapêutico , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Linhagem Celular , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/toxicidade , Desenho de Fármacos , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Oligopeptídeos/toxicidade , Vancomicina/farmacologia , Vancomicina/toxicidade , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/fisiologia
12.
Biotechnol Bioeng ; 115(8): 2000-2012, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665026

RESUMO

Anhydrous polymers are actively explored as alternative materials to overcome limitations of conventional hydrogel-based antibacterial coating. However, the requirement for strong organic solvent in polymerization reactions often necessitates extra protection steps for encapsulation of target biomolecules, lowering encapsulation efficiency, and increasing process complexity. This study reports a novel coating strategy that allows direct solvation and encapsulation of antimicrobial peptides (HHC36) into anhydrous polycaprolactone (PCL) polymer-based dual layer coating. A thin 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) film is layered onto the peptide-impregnated PCL as a diffusion barrier, to modulate and enhance release kinetics. The impregnated peptides are eventually released in a controlled fashion. The use of 2,2,2-trifluoroethanol (TFE), as polymerization and solvation medium, induces the impregnated peptides to adopt highly stable turned conformation, conserving peptide integrity, and functionality during both encapsulation and subsequent release processes. The dual layer coating showed sustained antibacterial functionality, lasting for 14 days. In vivo assessment using an experimental mouse wounding model demonstrated good biocompatibility and significant antimicrobial efficacy of the coating under physiological conditions. The coating was translated onto silicone urinary catheters and showed promising antibacterial efficacy, even outperforming commercial silver-based Dover cather. This anhydrous polymer-based platform holds immense potential as an effective antibacterial coating to prevent clinical device-associated infections. The simplicity of the coating process enhances its industrial viability.


Assuntos
Anti-Infecciosos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos , Poliésteres/administração & dosagem , Animais , Anti-Infecciosos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Infecções Relacionadas a Cateter/prevenção & controle , Modelos Animais de Doenças , Camundongos , Infecções Urinárias/prevenção & controle , Infecção dos Ferimentos/prevenção & controle
13.
J Infect Dis ; 216(12): 1644-1654, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29045678

RESUMO

Enterococcus faecalis is one of the most frequently isolated bacterial species in wounds yet little is known about its pathogenic mechanisms in this setting. Here, we used a mouse wound excisional model to characterize the infection dynamics of E faecalis and show that infected wounds result in 2 different states depending on the initial inoculum. Low-dose inocula were associated with short-term, low-titer colonization whereas high-dose inocula were associated with acute bacterial replication and long-term persistence. High-dose infection and persistence were also associated with immune cell infiltration, despite suppression of some inflammatory cytokines and delayed wound healing. During high-dose infection, the multiple peptide resistance factor, which is involved in resisting immune clearance, contributes to E faecalis fitness. These results comprehensively describe a mouse model for investigating E faecalis wound infection determinants, and suggest that both immune modulation and resistance contribute to persistent, nonhealing wounds.


Assuntos
Enterococcus faecalis/imunologia , Enterococcus faecalis/patogenicidade , Infecções por Bactérias Gram-Positivas/patologia , Evasão da Resposta Imune , Infecção dos Ferimentos/patologia , Animais , Modelos Animais de Doenças , Enterococcus faecalis/crescimento & desenvolvimento , Infecções por Bactérias Gram-Positivas/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Infecção dos Ferimentos/microbiologia
14.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28893918

RESUMO

Enterococcus faecalis, a member of the human gastrointestinal microbiota, is an opportunistic pathogen associated with hospital-acquired wound, bloodstream, and urinary tract infections. E. faecalis can subvert or evade immune-mediated clearance, although the mechanisms are poorly understood. In this study, we examined E. faecalis-mediated subversion of macrophage activation. We observed that E. faecalis actively prevents NF-κB signaling in mouse RAW264.7 macrophages in the presence of Toll-like receptor agonists and during polymicrobial infection with Escherichia coliE. faecalis and E. coli coinfection in a mouse model of catheter-associated urinary tract infection (CAUTI) resulted in a suppressed macrophage transcriptional response in the bladder compared to that with E. coli infection alone. Finally, we demonstrated that coinoculation of E. faecalis with a commensal strain of E. coli into catheterized bladders significantly augmented E. coli CAUTI. Taken together, these results support the hypothesis that E. faecalis suppression of NF-κB-driven responses in macrophages promotes polymicrobial CAUTI pathogenesis, especially during coinfection with less virulent or commensal E. coli strains.


Assuntos
Infecções Relacionadas a Cateter/microbiologia , Coinfecção/microbiologia , Enterococcus faecalis/imunologia , Enterococcus faecalis/fisiologia , Tolerância Imunológica , Infecções Urinárias/microbiologia , Animais , Modelos Animais de Doenças , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Infecções por Bactérias Gram-Positivas/complicações , Infecções por Bactérias Gram-Positivas/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais
15.
Mol Carcinog ; 55(5): 420-30, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25648304

RESUMO

Study investigated the ability of docosahexaenoic acid (DHA) alone and in combination with gamma-tocotrienol (γT3) to eliminate aldehyde dehydrogenase positive (ALDH+) cells and to inhibit mammosphere formation, biomarker and functional assay for tumor initiating cells (TICs), respectively, in human triple negative breast cancer cells (TNBCs), and investigated possible mechanisms of action. DHA upregulated Src homology region 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) protein levels and suppressed levels of phosphorylated signal transducer and activator of transcription-3 (pStat3) and its downstream mediators c-Myc, and cyclin D1. siRNA to SHP-1 enhanced the percentage of ALDH+ cells and Stat-3 signaling, as well as inhibited, in part, the ability of DHA to reduce the percentage of ALDH+ cells and Stat-3 signaling. γT3 alone and in combination with DHA reduced ALDH+ TNBCs, up-regulated SHP-1 protein levels, and suppressed Stat-3 signaling. Taken together, data demonstrate the anti-TIC potential of achievable concentrations of DHA alone as well as in combination with γT3.


Assuntos
Aldeído Desidrogenase/metabolismo , Cromanos/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/enzimologia , Vitamina E/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/enzimologia , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Vitamina E/farmacologia
16.
J Health Commun ; 21(6): 658-68, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27166651

RESUMO

Diabetes self-management education can improve outcomes in adults with Type 2 diabetes mellitus (T2DM). However, Hispanics, a group that carries a large burden of disease, may not participate in diabetes education programs. Audience engagement with entertainment-education has been associated with improved health education outcomes and may engage and empower Hispanic users to active self-care. Successful use of entertainment-education relies on the use of characters and situations with whom the viewers can feel some sense of involvement and for Hispanic audiences is encouraged when storylines and characters are culturally sensitive. In this study, we used a mixed methods approach that included descriptive statistics of closed-ended and content analysis of open-ended questions to measure the cultural sensitivity of the telenovela portion of a novel technology-based application called Sugar, Heart, and Life (SHL). Specifically, we analyzed the responses of 123 male and female patients diagnosed with uncontrolled T2DM to determine viewer involvement with characters and situations in the telenovela, viewer perceived self-efficacy in following recommendations, as well as viewer satisfaction with the program. Our findings indicate that the SHL application achieved its goal of creating a user-friendly program that depicted realistic, culturally sensitive characters and storylines that resonated with Hispanic audiences and ultimately fostered perceived self-efficacy related to following recommendations given about healthy lifestyle changes for diabetes self-management. These findings suggest that the SHL application is a culturally sensitive health education intervention for use by Hispanic male and female individuals that may empower them in self-management of T2DM.


Assuntos
Assistência à Saúde Culturalmente Competente , Diabetes Mellitus Tipo 2/etnologia , Educação em Saúde/métodos , Hispânico ou Latino/psicologia , Autocuidado/psicologia , Adulto , Idoso , Diabetes Mellitus Tipo 2/terapia , Feminino , Hispânico ou Latino/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Programas e Projetos de Saúde , Autoeficácia , Televisão
17.
Proc Natl Acad Sci U S A ; 110(50): 20230-5, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24191013

RESUMO

Virulence factor secretion and assembly occurs at spatially restricted foci in some Gram-positive bacteria. Given the essentiality of the general secretion pathway in bacteria and the contribution of virulence factors to disease progression, the foci that coordinate these processes are attractive antimicrobial targets. In this study, we show in Enterococcus faecalis that SecA and Sortase A, required for the attachment of virulence factors to the cell wall, localize to discrete domains near the septum or nascent septal site as the bacteria proceed through the cell cycle. We also demonstrate that cationic human ß-defensins interact with E. faecalis at discrete septal foci, and this exposure disrupts sites of localized secretion and sorting. Modification of anionic lipids by multiple peptide resistance factor, a protein that confers antimicrobial peptide resistance by electrostatic repulsion, renders E. faecalis more resistant to killing by defensins and less susceptible to focal targeting by the cationic antimicrobial peptides. These data suggest a paradigm in which focal targeting by antimicrobial peptides is linked to their killing efficiency and to disruption of virulence factor assembly.


Assuntos
Adenosina Trifosfatases/metabolismo , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Enterococcus faecalis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Virulência/biossíntese , beta-Defensinas/metabolismo , Primers do DNA/genética , Imunofluorescência , Humanos , Canais de Translocação SEC , Proteínas SecA
18.
Elife ; 132024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767331

RESUMO

Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.


If wounds get infected, they heal much more slowly, sometimes leading to skin damage and other complications, including disseminated infections or even amputation. Infections can happen in many types of wounds, ranging from ulcers in patients with diabetes to severe burns. If infections are not cleared quickly, the wounds can become 'chronic' and are unable to heal without intervention. Enterococcus faecalis is a type of bacteria that normally lives in the gut. Within that environment, in healthy people, it is not harmful. However, if it comes into contact with wounds ­ particularly diabetic ulcers or the site of a surgery ­ it can cause persistent infections and prevent healing. Although researchers are beginning to understand how E. faecalis initially colonises wounds, the biological mechanisms that transform these infections into chronic wounds are still largely unknown. Celik et al. therefore set out to investigate exactly how E. faecalis interferes with wound healing. To do this, Celik et al. looked at E. faecalis-infected wounds in mice and compared them to uninfected ones. Using a genetic technique called single-cell RNA sequencing, Celik et al. were able to determine which genes were switched on in individual skin and immune cells at the site of the wounds. This in turn allowed the researchers to determine how those cells were behaving in both infected and uninfected conditions. The experiments revealed that when E. faecalis was present in wounds, several important cell types in the wounds did not behave normally. For example, although the infected skin cells still underwent a change in behaviour required for healing (called an epithelial-mesenchymal transition), the change was both premature and incomplete. In other words, the skin cells in infected wounds started changing too early and did not finish the healing process properly. E. faecalis also changed the way macrophages and neutrophils worked within the wounds. These are cells in our immune system that normally promote inflammation, a process involved in both uninfected wounds or during infections and is a key part of wound healing when properly controlled. In the E. faecalis-infected wounds, these cells' inflammatory properties were suppressed, making them less helpful for healing. These results shed new light on how E. faecalis interacts with skin cells and the immune system to disrupt wound healing. Celik et al. hope that this knowledge will allow us to find new ways to target E. faecalis infections, and ultimately develop treatments to help chronic wounds heal better and faster.


Assuntos
Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Queratinócitos , Cicatrização , Enterococcus faecalis/fisiologia , Enterococcus faecalis/genética , Animais , Camundongos , Infecções por Bactérias Gram-Positivas/microbiologia , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/imunologia , Modelos Animais de Doenças , Infecção dos Ferimentos/microbiologia , Transcriptoma , Camundongos Endogâmicos C57BL , Análise de Célula Única , Transição Epitelial-Mesenquimal/genética , Masculino , Fibroblastos/microbiologia , Fibroblastos/metabolismo
19.
ACS Infect Dis ; 10(5): 1725-1738, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38602352

RESUMO

Host-acting compounds are emerging as potential alternatives to combating antibiotic resistance. Here, we show that bosutinib, an FDA-approved chemotherapeutic for treating chronic myelogenous leukemia, does not possess any antibiotic activity but enhances macrophage responses to bacterial infection. In vitro, bosutinib stimulates murine and human macrophages to kill bacteria more effectively. In a murine wound infection with vancomycin-resistant Enterococcus faecalis, a single intraperitoneal bosutinib injection or multiple topical applications on the wound reduce the bacterial load by approximately 10-fold, which is abolished by macrophage depletion. Mechanistically, bosutinib stimulates macrophage phagocytosis of bacteria by upregulating surface expression of bacterial uptake markers Dectin-1 and CD14 and promoting actin remodeling. Bosutinib also stimulates bacterial killing by elevating the intracellular levels of reactive oxygen species. Moreover, bosutinib drives NF-κB activation, which protects infected macrophages from dying. Other Src kinase inhibitors such as DMAT and tirbanibulin also upregulate expression of bacterial uptake markers in macrophages and enhance intracellular bacterial killing. Finally, cotreatment with bosutinib and mitoxantrone, another chemotherapeutic in clinical use, results in an additive effect on bacterial clearance in vitro and in vivo. These results show that bosutinib stimulates macrophage clearance of bacterial infections through multiple mechanisms and could be used to boost the host innate immunity to combat drug-resistant bacterial infections.


Assuntos
Compostos de Anilina , Antibacterianos , Sobrevivência Celular , Macrófagos , Fagocitose , Animais , Humanos , Camundongos , Compostos de Anilina/farmacologia , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Nitrilas/farmacologia , Fagocitose/efeitos dos fármacos , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
20.
Microbiol Mol Biol Rev ; : e0006924, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239986

RESUMO

SUMMARYEnterococcus faecalis and Enterococcus faecium are human pathobionts that exhibit a dual lifestyle as commensal and pathogenic bacteria. The pathogenic lifestyle is associated with specific conditions involving host susceptibility and intestinal overgrowth or the use of a medical device. Although the virulence of E. faecium appears to benefit from its antimicrobial resistance, E. faecalis is recognized for its higher pathogenic potential. E. faecalis has long been considered a predominantly extracellular pathogen; it adheres to and is taken up by a wide range of mammalian cells, albeit with less efficiency than classical intracellular enteropathogens. Carbohydrate structures, rather than proteinaceous moieties, are likely to be primarily involved in the adhesion of E. faecalis to epithelial cells. Consistently, few adhesins have been implicated in the adhesion of E. faecalis to epithelial cells. On the host side, very little is known about cognate receptors, except for the role of glycosaminoglycans during macrophage infection. Several lines of evidence indicate that E. faecalis internalization may involve a zipper-like mechanism as well as a macropinocytosis pathway. Conversely, E. faecalis can use several strategies to prevent engulfment in phagocytes. However, the bacterial and host mechanisms underlying cell infection by E. faecalis are still in their infancy. The most recent striking finding is the existence of an intracellular lifestyle where E. faecalis can replicate within a variety of host cells. In this review, we summarize and discuss the current knowledge of E. faecalis-host cell interactions and argue on the need for further mechanistic studies to prevent or reduce infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA