Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 187(11): 5952-63, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22031761

RESUMO

The hematopoietic actin regulatory protein hematopoietic lineage cell-specific protein 1 (HS1) is required for cell spreading and signaling in lymphocytes, but the scope of HS1 function in Ag presentation has not been addressed. We show that dendritic cells (DCs) from HS1(-/-) mice differentiate normally and display normal LPS-induced upregulation of surface markers and cytokines. Consistent with their normal expression of MHC and costimulatory molecules, HS1(-/-) DCs present OVA peptide efficiently to CD4(+) T cells. However, presentation of OVA protein is defective. Similarly, MHC class I-dependent presentation of VSV8 peptide to CD8(+) T cells occurs normally, but cross-presentation of GRP94/VSV8 complexes is defective. Analysis of Ag uptake pathways shows that HS1 is required for receptor-mediated endocytosis, but not for phagocytosis or macropinocytosis. HS1 interacts with dynamin 2, a protein involved in scission of endocytic vesicles. However, HS1(-/-) DCs showed decreased numbers of endocytic invaginations, whereas dynamin-inhibited cells showed accumulation of these endocytic intermediates. Taken together, these studies show that HS1 promotes an early step in the endocytic pathway that is required for efficient Ag presentation of exogenous Ag by DCs.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Endocitose/imunologia , Fator Estimulador de Colônias de Granulócitos/imunologia , Animais , Western Blotting , Separação Celular , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Ovalbumina/imunologia
2.
J Immunol ; 183(11): 7352-61, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19917685

RESUMO

Productive T cell activation requires efficient reorganization of the actin cytoskeleton. We showed previously that the actin-regulatory protein, hematopoietic lineage cell-specific protein 1 (HS1), is required for the stabilization of F-actin and Vav1 at the immunological synapse and for efficient calcium responses. The Tec family kinase IL-2-inducible T cell kinase (Itk) regulates similar aspects of T cell activation, suggesting that these proteins act in the same pathway. Using video microscopy, we show that T cells lacking Itk or HS1 exhibited similar defects in actin responses, extending unstable lamellipodial protrusions upon TCR stimulation. HS1 and Itk could be coimmunoprecipitated from T cell lysates, and GST-pulldown studies showed that Itk's Src homology 2 domain binds directly to two phosphotyrosines in HS1. In the absence of Itk, or in T cells overexpressing an Itk Src homology 2 domain mutant, HS1 failed to localize to the immunological synapse, indicating that Itk serves to recruit HS1 to sites of TCR engagement. Because Itk is required for phospholipase C (PLC)gamma1 phosphorylation and calcium store release, we examined the calcium signaling pathway in HS1(-/-) T cells in greater detail. In response to TCR engagement, T cells lacking HS1 exhibited diminished calcium store release, but TCR-dependent PLCgamma1 phosphorylation was intact, indicating that HS1's role in calcium signaling is distinct from that of Itk. HS1-deficient T cells exhibited defective cytoskeletal association of PLCgamma1 and altered formation of PLCgamma1 microclusters. We conclude that HS1 functions as an effector of Itk in the T cell actin-regulatory pathway, and directs the spatial organization of PLCgamma1 signaling complexes.


Assuntos
Fator Estimulador de Colônias de Granulócitos/imunologia , Sinapses Imunológicas/imunologia , Fosfolipase C gama/imunologia , Proteínas Tirosina Quinases/imunologia , Linfócitos T/imunologia , Actinas/metabolismo , Animais , Western Blotting , Sinalização do Cálcio/imunologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Sinapses Imunológicas/metabolismo , Imunoprecipitação , Células Jurkat , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Fosfolipase C gama/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Pseudópodes/metabolismo , Pseudópodes/patologia , Interferência de RNA , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Transfecção
3.
Dev Cell ; 27(1): 103-12, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24075808

RESUMO

The ability of cells to faithfully duplicate their two centrioles once per cell cycle is critical for proper mitotic progression and chromosome segregation. Multiciliated cells represent an interesting variation of centriole duplication in that these cells generate greater than 100 centrioles, which form the basal bodies of their motile cilia. This centriole amplification is proposed to require a structure termed the deuterosome, thought to be capable of promoting de novo centriole biogenesis. Here, we begin to molecularly characterize the deuterosome and identify it as a site for the localization of Cep152, Plk4, and SAS6. Additionally we identify CCDC78 as a centriole-associated and deuterosome protein that is essential for centriole amplification. Overexpression of Cep152, but not Plk4, SAS6, or CCDC78, drives overamplification of centrioles. However, in CCDC78 morphants, Cep152 fails to localize to the deuterosome and centriole biogenesis is impaired, indicating that CCDC78-mediated recruitment of Cep152 is required for deuterosome-mediated centriole biogenesis.


Assuntos
Centríolos/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ciclo Celular , Centríolos/ultraestrutura , Cílios/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Camundongos , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA