Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 43(9): 2743-2758, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278015

RESUMO

Removing power line noise and other frequency-specific artifacts from electrophysiological data without affecting neural signals remains a challenging task. Recently, an approach was introduced that combines spectral and spatial filtering to effectively remove line noise: Zapline. This algorithm, however, requires manual selection of the noise frequency and the number of spatial components to remove during spatial filtering. Moreover, it assumes that noise frequency and spatial topography are stable over time, which is often not warranted. To overcome these issues, we introduce Zapline-plus, which allows adaptive and automatic removal of frequency-specific noise artifacts from M/electroencephalography (EEG) and LFP data. To achieve this, our extension first segments the data into periods (chunks) in which the noise is spatially stable. Then, for each chunk, it searches for peaks in the power spectrum, and finally applies Zapline. The exact noise frequency around the found target frequency is also determined separately for every chunk to allow fluctuations of the peak noise frequency over time. The number of to-be-removed components by Zapline is automatically determined using an outlier detection algorithm. Finally, the frequency spectrum after cleaning is analyzed for suboptimal cleaning, and parameters are adapted accordingly if necessary before re-running the process. The software creates a detailed plot for monitoring the cleaning. We highlight the efficacy of the different features of our algorithm by applying it to four openly available data sets, two EEG sets containing both stationary and mobile task conditions, and two magnetoencephalography sets containing strong line noise.


Assuntos
Artefatos , Processamento de Sinais Assistido por Computador , Algoritmos , Eletroencefalografia , Humanos , Magnetoencefalografia
2.
Eur J Neurosci ; 54(12): 8406-8420, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33012055

RESUMO

Recent developments in EEG hardware and analyses approaches allow for recordings in both stationary and mobile settings. Irrespective of the experimental setting, EEG recordings are contaminated with noise that has to be removed before the data can be functionally interpreted. Independent component analysis (ICA) is a commonly used tool to remove artifacts such as eye movement, muscle activity, and external noise from the data and to analyze activity on the level of EEG effective brain sources. The effectiveness of filtering the data is one key preprocessing step to improve the decomposition that has been investigated previously. However, no study thus far compared the different requirements of mobile and stationary experiments regarding the preprocessing for ICA decomposition. We thus evaluated how movement in EEG experiments, the number of channels, and the high-pass filter cutoff during preprocessing influence the ICA decomposition. We found that for commonly used settings (stationary experiment, 64 channels, 0.5 Hz filter), the ICA results are acceptable. However, high-pass filters of up to 2 Hz cut-off frequency should be used in mobile experiments, and more channels require a higher filter to reach an optimal decomposition. Fewer brain ICs were found in mobile experiments, but cleaning the data with ICA has been proved to be important and functional even with low-density channel setups. Based on the results, we provide guidelines for different experimental settings that improve the ICA decomposition.


Assuntos
Eletroencefalografia , Processamento de Sinais Assistido por Computador , Algoritmos , Artefatos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Movimentos Oculares
3.
Eur J Neurosci ; 54(12): 8256-8282, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33738880

RESUMO

Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion-constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark-based navigation in actively behaving young adults, solving a Y-maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state-of-the-art brain imaging literature of landmark-based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo-spatial processing and coding, we observed an alpha-power desynchronization while participants gathered visual information. We also hypothesized behavior-dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time-frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high-density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark-based navigation.


Assuntos
Ondas Encefálicas , Navegação Espacial , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Adulto Jovem
4.
Front Neuroergon ; 5: 1346791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813519

RESUMO

The emerging integration of Brain-Computer Interfaces (BCIs) in human-robot collaboration holds promise for dynamic adaptive interaction. The use of electroencephalogram (EEG)-measured error-related potentials (ErrPs) for online error detection in assistive devices offers a practical method for improving the reliability of such devices. However, continuous online error detection faces challenges such as developing efficient and lightweight classification techniques for quick predictions, reducing false alarms from artifacts, and dealing with the non-stationarity of EEG signals. Further research is essential to address the complexities of continuous classification in online sessions. With this study, we demonstrated a comprehensive approach for continuous online EEG-based machine error detection, which emerged as the winner of a competition at the 32nd International Joint Conference on Artificial Intelligence. The competition consisted of two stages: an offline stage for model development using pre-recorded, labeled EEG data, and an online stage 3 months after the offline stage, where these models were tested live on continuously streamed EEG data to detect errors in orthosis movements in real time. Our approach incorporates two temporal-derivative features with an effect size-based feature selection technique for model training, together with a lightweight noise filtering method for online sessions without recalibration of the model. The model trained in the offline stage not only resulted in a high average cross-validation accuracy of 89.9% across all participants, but also demonstrated remarkable performance during the online session 3 months after the initial data collection without further calibration, maintaining a low overall false alarm rate of 1.7% and swift response capabilities. Our research makes two significant contributions to the field. Firstly, it demonstrates the feasibility of integrating two temporal derivative features with an effect size-based feature selection strategy, particularly in online EEG-based BCIs. Secondly, our work introduces an innovative approach designed for continuous online error prediction, which includes a straightforward noise rejection technique to reduce false alarms. This study serves as a feasibility investigation into a methodology for seamless error detection that promises to transform practical applications in the domain of neuroadaptive technology and human-robot interaction.

5.
J Neural Eng ; 19(6)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36536595

RESUMO

Objective.Magneto- and electroencephalography (M/EEG) measurements record a mix of signals from the brain, eyes, and muscles. These signals can be disentangled for artifact cleaning e.g. using spatial filtering techniques. However, correctly localizing and identifying these components relies on head models that so far only take brain sources into account.Approach.We thus developed the Head Artifact Model using Tripoles (HArtMuT). This volume conduction head model extends to the neck and includes brain sources as well as sources representing eyes and muscles that can be modeled as single dipoles, symmetrical dipoles, and tripoles. We compared a HArtMuT four-layer boundary element model (BEM) with the EEGLAB standard head model on their localization accuracy and residual variance (RV) using a HArtMuT finite element model (FEM) as ground truth. We also evaluated the RV on real-world data of mobile participants, comparing different HArtMuT BEM types with the EEGLAB standard head model.Main results.We found that HArtMuT improves localization for all sources, especially non-brain, and localization error and RV of non-brain sources were in the same range as those of brain sources. The best results were achieved by using cortical dipoles, muscular tripoles, and ocular symmetric dipoles, but dipolar sources alone can already lead to convincing results.Significance.We conclude that HArtMuT is well suited for modeling eye and muscle contributions to the M/EEG signal. It can be used to localize sources and to identify brain, eye, and muscle components. HArtMuT is freely available and can be integrated into standard software.


Assuntos
Artefatos , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Músculos
6.
J Neural Eng ; 19(3)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35462356

RESUMO

Objective. Neural interfaces hold significant promise to implicitly track user experience. Their application in virtual and augmented reality (VR/AR) simulations is especially favorable as it allows user assessment without breaking the immersive experience. In VR, designing immersion is one key challenge. Subjective questionnaires are the established metrics to assess the effectiveness of immersive VR simulations. However, administering such questionnaires requires breaking the immersive experience they are supposed to assess.Approach. We present a complimentary metric based on a event-related potentials. For the metric to be robust, the neural signal employed must be reliable. Hence, it is beneficial to target the neural signal's cortical origin directly, efficiently separating signal from noise. To test this new complementary metric, we designed a reach-to-tap paradigm in VR to probe electroencephalography (EEG) and movement adaptation to visuo-haptic glitches. Our working hypothesis was, that these glitches, or violations of the predicted action outcome, may indicate a disrupted user experience.Main results. Using prediction error negativity features, we classified VR glitches with 77% accuracy. We localized the EEG sources driving the classification and found midline cingulate EEG sources and a distributed network of parieto-occipital EEG sources to enable the classification success.Significance. Prediction error signatures from these sources reflect violations of user's predictions during interaction with AR/VR, promising a robust and targeted marker for adaptive user interfaces.


Assuntos
Realidade Aumentada , Realidade Virtual , Eletroencefalografia , Potenciais Evocados , Movimento , Interface Usuário-Computador
7.
Sci Rep ; 11(1): 18186, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521939

RESUMO

The retrosplenial complex (RSC) plays a crucial role in spatial orientation by computing heading direction and translating between distinct spatial reference frames based on multi-sensory information. While invasive studies allow investigating heading computation in moving animals, established non-invasive analyses of human brain dynamics are restricted to stationary setups. To investigate the role of the RSC in heading computation of actively moving humans, we used a Mobile Brain/Body Imaging approach synchronizing electroencephalography with motion capture and virtual reality. Data from physically rotating participants were contrasted with rotations based only on visual flow. During physical rotation, varying rotation velocities were accompanied by pronounced wide frequency band synchronization in RSC, the parietal and occipital cortices. In contrast, the visual flow rotation condition was associated with pronounced alpha band desynchronization, replicating previous findings in desktop navigation studies, and notably absent during physical rotation. These results suggest an involvement of the human RSC in heading computation based on visual, vestibular, and proprioceptive input and implicate revisiting traditional findings of alpha desynchronization in areas of the navigation network during spatial orientation in movement-restricted participants.


Assuntos
Giro do Cíngulo/fisiologia , Movimentos da Cabeça , Lobo Occipital/fisiologia , Orientação Espacial , Lobo Parietal/fisiologia , Adulto , Ritmo alfa , Feminino , Humanos , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA