RESUMO
Our study aimed to evaluate the presence, clinical associations, and potential mechanistic roles of non-criteria antiphospholipid antibodies (aPL) and circulating calprotectin, a highly stable marker of neutrophil extracellular trap release (NETosis), in pediatric APS patients. We found that 79% of pediatric APS patients had at least one non-criteria aPL at moderate-to-high titer. Univariate logistic regression demonstrated that positive anti-beta-2 glycoprotein I domain 1 (anti-D1) IgG (p = 0.008), anti-phosphatidylserine/prothrombin (aPS/PT) IgG (p < 0.001), and aPS/PT IgM (p < 0.001) were significantly associated with venous thrombosis. Positive anti-D1 IgG (p < 0.001), aPS/PT IgG (p < 0.001), and aPS/PT IgM (p = 0.001) were also associated with non-thrombotic manifestations of APS, such as thrombocytopenia. Increased levels of calprotectin were detected in children with APS. Calprotectin correlated positively with absolute neutrophil count (r = 0.63, p = 0.008) and negatively with platelet count (r = -0.59, p = 0.015). Mechanistically, plasma from pediatric APS patients with high calprotectin levels impaired platelet viability in a dose-dependent manner.
Assuntos
Anticorpos Antifosfolipídeos , Síndrome Antifosfolipídica , Humanos , Criança , Biomarcadores , beta 2-Glicoproteína I , Imunoglobulina G , Imunoglobulina M , Protrombina , Complexo Antígeno L1 LeucocitárioRESUMO
Beta-2 glycoprotein I (ß2GPI) is a phospholipid-binding plasma protein and prominent autoantigen in antiphospholipid syndrome (APS). Here, we tested the hypothesis that ß2GPI might bind to not only phospholipids, but also cell-free DNA and neutrophil extracellular traps (NETs). We report that ß2GPI interacts with cell-free DNA from different species, as well as NETs, in a dose-dependent manner, retarding their migration in an agarose-gel electrophoretic mobility shift assay. We confirm the direct binding interaction of ß2GPI with DNA and NETs by ELISA. We also demonstrate that ß2GPI colocalizes with NET strands by immunofluorescence microscopy. Finally, we provide evidence that ß2GPI-DNA complexes can be detected in the plasma of APS patients, where they positively correlate with an established biomarker of NET remnants. Taken together, our findings indicate that ß2GPI interacts with DNA and NETs, and suggest that this interaction may play a role as a perpetuator and/or instigator of autoimmunity in APS.
RESUMO
Urinary DNA is widely studied as a non-invasive marker for monitoring of kidneys after transplantation or the progression of urinary tract tumors. The quantity of urinary DNA especially of mitochondrial origin has been reported to mirror kidney damage in various renal diseases and their models. Processing of samples might affect urinary DNA concentrations but the details are not clear. Samples of urine were collected from fifteen healthy volunteers. DNA was extracted from the whole urine, but also from the supernatant after centrifugation at 1600 g and 16000 g. In addition, we have analyzed the DNA in the microparticles in the pellet after the last spin. DNA was measured using fluorometry and real time PCR targeting nuclear and mitochondrial sequences. Addition of deoxyribonuclease to aliquots of samples enabled the characterization of DNA protection. Centrifugation at 1600 g decreased the concentration of extracted DNA by 66% at least in samples with higher DNA in whole urine. Interestingly, the additional spin at 16000 g did not result in a significant decrease in DNA concentration in the supernatant despite detectable microparticle-associated DNA. Deoxyribonuclease decreases total and nuclear DNA by 26% and 31% in whole urine. The majority of urinary mitochondrial DNA seems to be protected against deoxyribonuclease. Our results indicate high variability in urinary DNA even in healthy probands. Extracellular urinary DNA is partially bound to cell debris or microparticles, but a considerable part is still in the supernatant and is protected against cleavage. Further research should identify the nature of the protection, especially for mitochondrial DNA. Better understanding of the biology of urinary DNA should help its clinical interpretation.
Assuntos
Líquidos Corporais , DNA Mitocondrial , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/urina , Mitocôndrias , Centrifugação , DesoxirribonucleasesRESUMO
Deoxyribonucleases (DNases) cleave extracellular DNA (ecDNA) and are under intense research as interventions for diseases associated with high ecDNA, such as acute live injury. DNase I treatment decreases morbidity and mortality in this animal model. Endogenous DNase activity has high interindividual variability. In this study, we tested the hypothesis that high endogenous DNase activity is beneficial in an animal model of acute liver failure. DNase activity was measured in the plasma of adult male mice taken before i.p. injection of thioacetamide to induce acute liver failure. The survival of mice was monitored for 48 h. Mice were retrospectively divided into two groups based on the median DNase activity assessed using the gel-based single-radial enzyme diffusion assay. In acute liver failure, mice with a higher baseline DNase activity had lower mortality after 48 h (by 25%). Different protection of ecDNA against nucleases by vesicles or DNA-binding proteins could play a role and should be further evaluated. Similarly, the role of endogenous DNase activity should be analyzed in other disease models associated with high ecDNA.
Assuntos
Desoxirribonucleases , Falência Hepática Aguda , Masculino , Camundongos , Animais , Desoxirribonucleases/metabolismo , Estudos Retrospectivos , DNA/metabolismo , Desoxirribonuclease I , Modelos Animais , Falência Hepática Aguda/induzido quimicamenteRESUMO
Caffeine is a widely consumed psychostimulant with several mechanisms of action and various positive and negative effects on organisms. Caffeine undergoes extensive hepatic metabolism to form main metabolites such as theobromine, theophylline, paraxanthine, and 1,3,7-trimethyluric acid. However, interspecies diversities have been observed in caffeine metabolism. In the present study, we developed a sensitive and straightforward ultra-high-performance liquid chromatography-tandem mass spectrometry method to quantify caffeine and its primary metabolites, namely theobromine, theophylline, paraxanthine, and 1,3,7-trimethyluric acid in rat plasma. After extraction of analytes using micro solid-phase extraction plate, analytes were separated by elution gradient on the Acquity UPLC HSS T3 (50 × 2.1 mm, 1.8 µm) column over 4 min. The detection was done on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring modes using a positive electrospray ionization interface. The method was successfully validated according to the European Medicine Agency guideline over a concentration range of 5-1500 ng/ml for caffeine, 5-1200 ng/mL for theobromine, and 2.5-1200 ng/mL for theophylline, paraxanthine, and 1,3,7-trimethyluric acid. The developed method was applied to analyze samples from animal experiments focusing on the metabolism and effects of caffeine and caffeine-containing beverages.
Assuntos
Cafeína/sangue , Teobromina/sangue , Teofilina/sangue , Animais , Cafeína/metabolismo , Cromatografia Líquida de Alta Pressão , Masculino , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem , Teobromina/metabolismo , Teofilina/metabolismo , Ácido Úrico/análogos & derivadosRESUMO
OBJECTIVE: While thrombosis and pregnancy loss are the best-known clinical features of antiphospholipid syndrome (APS), many patients also exhibit "extra-criteria" manifestations, such as thrombocytopenia. The mechanisms that drive APS thrombocytopenia are not completely understood, and no clinical biomarkers are available for predicting antiphospholipid antibody (aPL)-mediated thrombocytopenia. Calprotectin is a heterodimer of S100A8 and S100A9 that is abundant in the neutrophil cytoplasm and released upon proinflammatory neutrophil activation. Here, we sought to evaluate the presence, clinical associations, and potential mechanistic roles of circulating calprotectin in a cohort of primary APS and aPL-positive patients. METHODS: Levels of circulating calprotectin were determined in plasma by the QUANTA Flash chemiluminescent assay. A viability dye-based platelet assay was used to assess the potential impact of calprotectin on aPL-mediated thrombocytopenia. RESULTS: Circulating calprotectin was measured in 112 patients with primary APS and 30 aPL-positive (without APS criteria manifestations or lupus) patients as compared to patients with lupus (without APS), patients with unprovoked venous thrombosis (without aPL), and healthy controls. Levels of calprotectin were higher in patients with primary APS and aPL-positive patients compared to healthy controls. After adjustment for age and sex, calprotectin level correlated positively with absolute neutrophil count (r = 0.41, P < 0.001), positively with C-reactive protein level (r = 0.34, P = 0.002), and negatively with platelet count (r = -0.24, P = 0.004). Mechanistically, we found that calprotectin provoked aPL-mediated thrombocytopenia by engaging platelet surface toll-like receptor 4 and activating the NLRP3-inflammasome, thereby reducing platelet viability in a caspase-1-dependent manner. CONCLUSION: These data suggest that calprotectin has the potential to be a functional biomarker and a new therapeutic target for APS thrombocytopenia.
Assuntos
Síndrome Antifosfolipídica , Plaquetas , Complexo Antígeno L1 Leucocitário , Trombocitopenia , Humanos , Síndrome Antifosfolipídica/sangue , Feminino , Complexo Antígeno L1 Leucocitário/sangue , Masculino , Pessoa de Meia-Idade , Adulto , Trombocitopenia/sangue , Plaquetas/metabolismo , Biomarcadores/sangue , Receptor 4 Toll-Like/sangue , Anticorpos Antifosfolipídeos/sangueRESUMO
Fever and hypothermia represent two opposite strategies for fighting systemic inflammation. Fever results in immune activation; hypothermia is associated with energy conservation. Systemic Inflammatory Response Syndrome (SIRS) remains a significant cause of mortality worldwide. SIRS can lead to a broad spectrum of clinical symptoms but importantly, patients can develop fever or hypothermia. During infection, polymorphonuclear cells (PMNs) such as neutrophils prevent pathogen dissemination through the formation of neutrophil extracellular traps (NETs) that ensnare and kill bacteria. However, when dysregulated, NETs also promote host tissue damage. Herein, we tested the hypothesis that temperature modulates NETs homeostasis in response to infection and inflammation. NETs formation was studied in response to infectious (Escherichia coli, Staphylococcus aureus) and sterile (mitochondria) agents. When compared to body temperature (37°C), NETs formation increased at 40°C; interestingly, the response was stunted at 35°C and 42°C. While CD16+ CD49d+ PMNs represent a small proportion of the neutrophil population, they formed ~45-85% of NETs irrespective of temperature. Temperature increased formyl peptide receptor 1 (FPR1) expression to a differential extent in CD16+ CD49d- vs. CD49d+ PMNSs, suggesting further complexity to neutrophil function in hypo/hyperthermic conditions. The capacity of NETs to induce Toll-like receptor 9 (TLR9)-mediated NF-κB activation was found to be temperature independent. Interestingly, NET degradation was enhanced at higher temperatures, which corresponded with greater plasma DNase activity in response to temperature increase. Collectively, our observations indicate that NETs formation and clearance are enhanced at 40°C whilst temperatures of 35°C and 42°C attenuate this response. Targeting PMN-driven immunity may represent new venues for intervention in pathological inflammation.
Assuntos
Armadilhas Extracelulares , Hipotermia , Humanos , Hipotermia/metabolismo , Hipotermia/patologia , Neutrófilos , Inflamação/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/patologiaRESUMO
OBJECTIVE: This study aimed to elucidate the presence, antigen specificities, and potential clinical associations of anti-neutrophil extracellular trap (anti-NET) antibodies in a multinational cohort of antiphospholipid (aPL) antibody-positive patients who did not have lupus. METHODS: Anti-NET IgG/IgM levels were measured in serum samples from 389 aPL-positive patients; 308 patients met the classification criteria for antiphospholipid syndrome. Multivariate logistic regression with best variable model selection was used to determine clinical associations. For a subset of the patients (n = 214), we profiled autoantibodies using an autoantigen microarray platform. RESULTS: We found elevated levels of anti-NET IgG and/or IgM in 45% of the aPL-positive patients. High anti-NET antibody levels are associated with more circulating myeloperoxidase (MPO)-DNA complexes, which are a biomarker of NETs. When considering clinical manifestations, positive anti-NET IgG was associated with lesions affecting the white matter of the brain, even after adjusting for demographic variables and aPL profiles. Anti-NET IgM tracked with complement consumption after controlling for aPL profiles; furthermore, patient serum samples containing high levels of anti-NET IgM efficiently deposited complement C3d on NETs. As determined by autoantigen microarray, positive testing for anti-NET IgG was significantly associated with several autoantibodies, including those recognizing citrullinated histones, heparan sulfate proteoglycan, laminin, MPO-DNA complexes, and nucleosomes. Anti-NET IgM positivity was associated with autoantibodies targeting single-stranded DNA, double-stranded DNA, and proliferating cell nuclear antigen. CONCLUSION: These data reveal high levels of anti-NET antibodies in 45% of aPL-positive patients, where they potentially activate the complement cascade. While anti-NET IgM may especially recognize DNA in NETs, anti-NET IgG species appear to be more likely to target NET-associated protein antigens.
Assuntos
Síndrome Antifosfolipídica , Armadilhas Extracelulares , Humanos , Anticorpos Antifosfolipídeos , Autoanticorpos , Imunoglobulina G , Imunoglobulina MRESUMO
It is currently unknown why obesity leads in some patients to prediabetes and metabolic syndrome. Microinflammation potentially caused by extracellular DNA is supposed to be involved. The aim of this cross-sectional study in healthy mice was to analyze the association between plasma extracellular DNA and glucose metabolism. Fasting glycemia and insulin were measured in healthy adult female mice that subsequently underwent an oral glucose tolerance test. Indices of glucose metabolism and insulin sensitivity were calculated. DNA was isolated from plasma and quantified fluorometrically. Deoxyribonuclease (DNase) activity of plasma was measured using the single radial enzyme diffusion method. Fasting glycemia correlated negatively with both, extracellular DNA and DNase (r = -0.44 and r = -0.32, respectively). DNase was associated positively with the incremental area under curve (r = 0.35), while extracellular DNA correlated negatively with total area under curve of glycemia during oral glucose tolerance test (r = -0.34). Measures of insulin sensitivity were found to be associated with neither extracellular DNA, nor DNase. The hypothesis of an association of low DNase with increased fasting glucose was partially proved. Surprisingly, low extracellular DNA is associated with higher fasting glucose and lower glucose tolerance in mice. As novel therapeutic targets for prediabetes and metabolic syndrome are highly needed, this study provides novel unexpected associations within the limitations of the focus on physiological variability as it was conducted on healthy mice. The causality of these associations should be proved in further interventional experiments.
Assuntos
DNA , Desoxirribonucleases , Resistência à Insulina , Síndrome Metabólica , Estado Pré-Diabético , Animais , Glicemia/metabolismo , Estudos Transversais , DNA/sangue , Desoxirribonucleases/sangue , Feminino , Insulina/metabolismo , Resistência à Insulina/fisiologia , CamundongosRESUMO
INTRODUCTION: Kidney disease is a worldwide health and economic burden, with rising prevalence. The search for biomarkers for earlier and more effective disease screening and monitoring is needed. Oxidative stress has been linked to both, acute kidney injury (AKI) and chronic kidney disease (CKD). The aim of our study was to investigate whether the concentrations of systemic markers of oxidative stress and antioxidant status are affected by AKI and CKD, and to identify potential biomarkers. METHODS: In adult male Wistar rats, AKI was induced by bilateral nephrectomy, and CKD was induced by 5/6 nephrectomy. Blood was collected 48 hours after surgery in AKI and 6 months after surgery in CKD. Advanced oxidation protein products (AOPP), thiobarbituric acid reactive substances (TBARS), advanced glycation end products (AGEs), fructosamine, total antioxidant capacity (TAC), and ferric reducing antioxidant power (FRAP) were measured. RESULTS: Impaired renal function was confirmed by high concentrations of plasma creatinine and urea in AKI and CKD animals. AOPP and fructosamine were higher by 100% and 54% in AKI, respectively, and by 100% and 199% in CKD, respectively, when compared to corresponding control groups. Similarly, there was approximately a twofold increase in AGEs (by 92%) and TAC (by 102%) during AKI. In CKD, concentrations of FRAP, as an antioxidative status marker, were doubled (by 107%) when compared to the control group, but concentration of TAC, another marker of antioxidative status, did not differ between the groups. CONCLUSIONS: AKI and CKD led to increased systemic oxidative stress. AOPP and fructosamine could be considered potential biomarkers for both, acute and chronic kidney damage. On the other hand, AGEs, TAC, and FRAP seem to be disease specific, which could help to differentiate between acute and chronic kidney injuries. However, this needs further validation in clinical studies.