Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO J ; 30(1): 43-56, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21102556

RESUMO

The evolutionarily conserved Notch signal transduction pathway regulates fundamental cellular processes during embryonic development and in the adult. Ligand binding induces presenilin-dependent cleavage of the receptor and a subsequent nuclear translocation of the Notch intracellular domain (NICD). In the nucleus, NICD binds to the recombination signal sequence-binding protein J (RBP-J)/CBF-1 transcription factor to induce expression of Notch target genes. Here, we report the identification and functional characterization of RBP-J interacting and tubulin associated (RITA) (C12ORF52) as a novel RBP-J/CBF-1-interacting protein. RITA is a highly conserved 36 kDa protein that, most interestingly, binds to tubulin in the cytoplasm and shuttles rapidly between cytoplasm and nucleus. This shuttling RITA exports RBP-J/CBF-1 from the nucleus. Functionally, we show that RITA can reverse a Notch-induced loss of primary neurogenesis in Xenopus laevis. Furthermore, RITA is able to downregulate Notch-mediated transcription. Thus, we propose that RITA acts as a negative modulator of the Notch signalling pathway, controlling the level of nuclear RBP-J/CBF-1, where its amounts are limiting.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Receptores Notch/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Centrossomo/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Expressão Gênica , Células HeLa , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Neurogênese , Ligação Proteica , Transporte Proteico , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Transcrição Gênica , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/análise , Proteínas de Xenopus/genética , Xenopus laevis/genética
2.
Dev Growth Differ ; 54(7): 702-16, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22957893

RESUMO

POU-V class proteins like Oct4 are crucial for keeping cells in an undifferentiated state. An Oct4 homologue in Xenopus laevis, Oct25, peaks in expression during early gastrulation, when many cells are still uncommitted. Nevertheless, extensive morphogenesis is taking place in all germ layers at that time. Phenotypical analysis of embryos with Oct25 overexpression revealed morphogenesis defects, beginning during early gastrulation and resulting in spina-bifida-like axial defects. Analysis of marker genes and different morphogenesis assays show inhibitory effects on convergence and extension and on mesoderm internalization. On a cellular level, cell-cell adhesion is reduced. On a molecular level, Oct25 overexpression activates expression of PAPC, a functional inhibitor of the cell adhesion molecule EP/C-cadherin. Intriguingly, Oct25 effects on cell-cell adhesion can be restored by overexpression of EP/C-cadherin or by inhibition of the PAPC function. Thus, Oct25 affects morphogenesis via activation of PAPC expression and subsequent functional inhibition of EP/C-cadherin.


Assuntos
Caderinas/biossíntese , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mesoderma/embriologia , Morfogênese/fisiologia , Fatores do Domínio POU/biossíntese , Proteínas de Xenopus/biossíntese , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/fisiologia , Mesoderma/citologia , Fatores do Domínio POU/genética , Protocaderinas , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
3.
Dev Biol ; 337(2): 259-73, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19895805

RESUMO

Forkhead box (Fox) transcription factors of subclass O are involved in cell survival, proliferation, apoptosis, cell metabolism and prevention of oxidative stress. FoxO genes are highly conserved throughout evolution and their functions were analyzed in several vertebrate and invertebrate organisms. We here report on the identification of FoxO4 and FoxO6 genes in Xenopus laevis and analyze their expression patterns in comparison with the previously described FoxO1 and FoxO3 genes. We demonstrate significant differences in their temporal and spatial expression during embryogenesis and in their relative expression within adult tissues. Overexpression of FoxO1, FoxO4 or FoxO6 results in severe gastrulation defects, while overexpression of FoxO3 reveals this defect only in a constitutively active form containing mutations of Akt-1 target sites. Injections of FoxO antisense morpholino oligonucleotides (MO) did not influence gastrulation, but, later onwards, the embryos showed a delay of development, severe body axis reduction and, finally, a high rate of lethality. Injection of FoxO4MO leads to specific defects in eye formation, neural crest migration and heart development, the latter being accompanied by loss of myocardin expression. Our observations suggest that FoxO genes in X. laevis are dispensable until blastopore closure but are required for tissue differentiation and organogenesis.


Assuntos
Desenvolvimento Embrionário/genética , Fatores de Transcrição Forkhead/genética , Gastrulação/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Anormalidades Craniofaciais/patologia , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário/efeitos dos fármacos , Anormalidades do Olho/patologia , Fatores de Transcrição Forkhead/metabolismo , Gastrulação/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Cardiopatias Congênitas/patologia , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo
4.
J Biol Chem ; 285(11): 8408-21, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20064932

RESUMO

Xenopus Oct25 is a POU family subclass V (POU-V) transcription factor with a distinct domain structure. To investigate the contribution of different domains to the function of Oct25, we have performed gain of function analyses. Deletions of the N- or C-terminal regions and of the Hox domain (except its nuclear localization signal) result in mutants being indistinguishable from the wild type protein in the suppression of genes promoting germ layer formation. Deletion of the complete POU domain generates a mutant that has no effect on embryogenesis. However, disruption of the alpha-helical structures in the POU domain, even by a single amino acid mutation, causes reversal of protein function. Overexpression of such mutants leads to dorsalization of embryos and formation of secondary axial structures. The underlying mechanism is an enhanced transcription of genes coding for antagonists of the ligands for ventralizing bone morphogenetic protein and Wnt pathways. Corresponding deletion mutants of Xenopus Oct60, Oct91, or mouse Oct4 also exhibit such a dominant-negative effect. Therefore, our results reveal that the integrity of the POU domain is crucial for the function of POU-V transcription factors in the regulation of genes that promote germ layer formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores do Domínio POU , Proteínas de Xenopus , Xenopus/genética , Ativinas/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Células Cultivadas , Deleção de Genes , Humanos , Rim/citologia , Camundongos , Mutagênese/fisiologia , Proteína Nodal/metabolismo , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 6 de Transcrição de Octâmero/metabolismo , Fatores do Domínio POU/química , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Proteínas com Domínio T/metabolismo , Transcrição Gênica/fisiologia , Xenopus/embriologia , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , beta Catenina/metabolismo
5.
Dev Biol ; 332(1): 82-9, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19409887

RESUMO

It is generally assumed that the characteristic deregionalized body plan of species with a snake-like morphology evolved through a corresponding homogenization of Hox gene expression domains along the primary axis. Here, we examine the expression of Hox genes in snake embryos and show that a collinear pattern of Hox expression is retained within the paraxial mesoderm of the trunk. Genes expressed at the anterior and most posterior, regionalized, parts of the skeleton correspond to the expected anatomical boundaries. Unexpectedly however, also the dorsal (thoracic), homogenous rib-bearing region of trunk, is regionalized by unconventional gradual anterior limits of Hox expression that are not obviously reflected in the skeletal anatomy. In the lateral plate mesoderm we also detect regionalized Hox expression yet the forelimb marker Tbx5 is not restricted to a rudimentary forelimb domain but is expressed throughout the entire flank region. Analysis of several Hox genes in a caecilian amphibian, which convergently evolved a deregionalized body plan, reveals a similar global collinear pattern of Hox expression. The differential expression of posterior, vertebra-modifying or even rib-suppressing Hox genes within the dorsal region is inconsistent with the homogeneity in vertebral identity. Our results suggest that the evolution of a deregionalized, snake-like body involved not only alterations in Hox gene cis-regulation but also a different downstream interpretation of the Hox code.


Assuntos
Anfíbios/embriologia , Padronização Corporal , Proteínas de Homeodomínio/genética , Serpentes/embriologia , Azul Alciano/metabolismo , Anfíbios/genética , Animais , Antraquinonas/metabolismo , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Lagartos/embriologia , Lagartos/genética , Mesoderma/metabolismo , Camundongos , Serpentes/genética , Somitos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
6.
Mol Cell Biol ; 25(23): 10379-90, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16287852

RESUMO

Notch is a transmembrane receptor that determines cell fates and pattern formation in all animal species. After ligand binding, proteolytic cleavage steps occur and the intracellular part of Notch translocates to the nucleus, where it targets the DNA-binding protein RBP-Jkappa/CBF1. In the absence of Notch, RBP-Jkappa represses Notch target genes through the recruitment of a corepressor complex. We and others have identified SHARP as a component of this complex. Here, we functionally demonstrate that the SHARP repression domain is necessary and sufficient to repress transcription and that the absence of this domain causes a dominant negative Notch-like phenotype. We identify the CtIP and CtBP corepressors as novel components of the human RBP-Jkappa/SHARP-corepressor complex and show that CtIP binds directly to the SHARP repression domain. Functionally, CtIP and CtBP augment SHARP-mediated repression. Transcriptional repression of the Notch target gene Hey1 is abolished in CtBP-deficient cells or after the functional knockout of CtBP. Furthermore, the endogenous Hey1 promoter is derepressed in CtBP-deficient cells. We propose that a corepressor complex containing CtIP/CtBP facilitates RBP-Jkappa/SHARP-mediated repression of Notch target genes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Oxirredutases do Álcool , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Transporte/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Endodesoxirribonucleases , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/genética , Receptores Notch/genética , Proteínas Repressoras/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/metabolismo
7.
Mech Dev ; 123(8): 614-25, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16860542

RESUMO

Three POU factors of subclass V, Oct-25, Oct-60 and Oct-91 are expressed in Xenopus oocytes and early embryos. We here demonstrate that vegetal overexpression of Oct-25, Oct-60, Oct-91 or mammalian Oct-3/4 suppresses mesendoderm formation in Xenopus embryos. Oct-25 and Oct-60 are shown to inhibit activin/nodal and FGF signaling pathways. Loss of Oct-25 and Oct-60 function results in elevated transcription of mesendodermal marker genes and ectopic formation of endoderm in the equatorial region of gastrula stage embryos. Within the ectoderm, Oct-25 promotes neural fate by upregulating neuroectodermal genes, such as Xsox2, which prevent differentiation of neural progenitors into neurons. We also show that mouse Oct-3/4 and Xenopus Oct-25 or Oct-60 behave as functional homologues. We conclude that Xenopus Oct proteins are required to control the levels of embryonic signaling pathways, thereby ensuring the correct specification of germ layers.


Assuntos
Ativinas/metabolismo , Gástrula/metabolismo , Fatores do Domínio POU/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Proteína Nodal , Fatores do Domínio POU/classificação , Fatores do Domínio POU/genética , RNA/genética , Xenopus laevis/genética
8.
Mech Dev ; 123(1): 84-96, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16278078

RESUMO

The active form of the Xenopus X-box binding protein 1 (xXBP1) partially synergizes and partially antagonizes with BMP-4 signaling. xXBP1 overexpression inhibits mesoderm differentiation and formation of neural tissues. A functional knockdown promotes differentiation of lateral and dorsal mesoderm but not of ventral mesoderm and of neuroectoderm. We show that the active form of xXBP1 in gastrula and early neurula stage embryos is generated by removal of exon 4 and not by an endoribonuclease activity in the endoplasmic reticulum. The N-terminal region of xXBP1 which contains the basic leucine-zipper also contains a nuclear localization signal and both, the N-terminal as well as the C-terminal regions are required for xXBP1 function. The effects of xXBP1 are in part correlated to a regulatory loop between xXBP1 and BMP-4. xXBP1 and BMP-4 stimulate mutually the transcription of each other, but xXBP1 inhibits the BMP-4 target gene, Xvent-2. Both, in vitro and in vivo assays demonstrate that xXBP1 interacts with BMP-4 and Xvent-2B promoters. GST-pulldown assays reveal that xXBP1 can interact with c-Jun, the transcriptional co-activator p300 and with the BMP-4 responsive Smad1. On the other hand, xXBP1 also binds to the inhibitory Smads, Smad6 and Smad7, that can act as transcriptional co-repressors. Based on these data, we conclude that xXBP1 might function as an inhibitor of mesodermal and neural tissue formation by acting either as transcriptional activator or as repressor. This dual activity depends upon binding of co-factors being involved in the formation of distinct transcription complexes.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Processamento Alternativo , Animais , Sequência de Bases , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mesoderma/metabolismo , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Sinais de Localização Nuclear , Fenótipo , Regiões Promotoras Genéticas , Deleção de Sequência , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
9.
Int J Dev Biol ; 50(4): 429-34, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16525939

RESUMO

Using RT-PCR and in situ hybridisation, we have analysed the temporal and spatial expression patterns of Xenopus Fox genes of subclass N. By screening cDNA libraries and by RT-PCR using embryonic RNA and primers derived from EST analyses, we could isolate FoxN2, FoxN4, FoxN5 and different isoforms of FoxN3. FoxN2 and FoxN3 transcripts were found during all developmental stages including early cleavage and tailbud stages. FoxN5 transcripts were only present at early cleavage stages, while FoxN4 expression began after midblastula transition. Spatial expression of FoxN2 was first detected in the early eye field and later, in the branchial arches, the vagal ganglion and in the developing retina. FoxN3 transcripts were found within the animal cap. In post-gastrula embryos, neural crest cells and the early eye field showed strong expression of FoxN3. At late tadpole stages, the branchial arches were stained. FoxN4 was expressed in the early eye field and later in the developing retina cells, the nephrostomes of the pronephric kidney and in the midbrain. A ubiquitous expression of FoxN5 was found in early cleavage stage embryos.


Assuntos
Embrião não Mamífero/metabolismo , Fatores de Transcrição Forkhead/biossíntese , Perfilação da Expressão Gênica , Proteínas de Xenopus/biossíntese , Sequência de Aminoácidos , Animais , Embrião não Mamífero/fisiologia , Fatores de Transcrição Forkhead/genética , Dados de Sequência Molecular , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Proteínas de Xenopus/genética , Xenopus laevis
10.
Int J Dev Biol ; 49(1): 53-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15744668

RESUMO

We here describe the sequences and expression patterns of three new Fox (fork head box) transcription factors in Xenopus laevis embryos. xlFoxI2, another member of subclass I, is maternally transcribed. Zygotic transcripts are first detected during neurulation and become localised to the dorsal part of epibranchial placodes. xlFoxM1 like xlFoxP1 are the first members of subclasses M and P described in Xenopus. Both genes are maternally expressed and transcripts are found during early cleavage stages in the animal blastomeres. xlFoxM1 is strongly upregulated during neurula stages and transcripts are localised in the neuroectoderm. Later, expression is found in the spinal cord, the rhombencephalon, the retina and in the branchial arches. xlFoxP1 is activated during organogenesis and is mainly expressed in the brain, head mesenchyme and in the splanchnic layer of the lateral plate mesoderm.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Família Multigênica , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead , Dados de Sequência Molecular , Alinhamento de Sequência , Fatores de Transcrição/biossíntese , Proteínas de Xenopus/biossíntese , Xenopus laevis
11.
Gene ; 344: 21-32, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15656969

RESUMO

Transcription factors of the Fox (fork head box) family have been found in all metazoan organisms. They are characterised by an evolutionary conserved DNA-binding domain of winged helix structure. In the South African clawed frog, Xenopus laevis, more than 30 Fox genes have been found so far. This review summarises our present knowledge regarding the general structure and common features of the fork head box and will then characterise Fox genes that have been described in Xenopus. Special attention was paid to the temporal and spatial expression patterns during early embryonic development. For some of these genes, the molecular mechanisms leading to their regulation after the onset of zygotic transcription are known. We also report on functional aspects including target gene regulation, cell or tissue specification and interference with the cell cycle. Finally, Fox proteins serve as mediators of signalling pathways and they might function as checkpoint molecules for the cross-regulatory interactions of different intracellular signal transduction chains.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Xenopus/genética , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Xenopus/embriologia , Xenopus/crescimento & desenvolvimento
12.
Mech Dev ; 111(1-2): 181-4, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11804794

RESUMO

We have investigated the sequence and expression pattern of the Xenopus laevis FoxD2 gene, a member of the fork head/winged helix multigene family. The derived protein sequence is most closely related to FoxD2 factors known from other species. Maternal FoxD2 transcripts are degraded during early cleavage stages. Zygotic transcription is activated after the midblastula transition followed by a pronounced increase during neurulation. Whole mount in situ hybridisations reveal that FoxD2 is predominantly expressed in the paraxial mesoderm, but not within the myotome. In addition, FoxD2 transcripts are found within the migrating ventral abdominal muscle precursors, in cranial neural crest cells surrounding the eye and populating the second and third visceral arches as well as within restricted areas of the diencephalon. In hatched tadpoles, FoxD2 expression is also observed within the terminal part of the gut.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Embrião não Mamífero , Fatores de Transcrição Forkhead , Dados de Sequência Molecular , Crista Neural , Homologia de Sequência de Aminoácidos , Xenopus laevis/genética
13.
Mech Dev ; 117(1-2): 283-7, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12204271

RESUMO

We report on the temporal and spatial expression pattern of two novel genes of the Xenopus fork head/winged helix family, xFoxB2 and xFoxI1c. xFoxB2 is activated at the late blastula stage and first expressed within the dorsolateral ectoderm except for the organiser territory. During gastrulation, xFoxB2 is found in two ectodermal stripes adjacent to the dorsal midline. Expression is completely down-regulated during neurulation. However, two distinct sets of cells expressing xFoxB2 re-appear in the rhombencephalon of swimming tadpoles. xFoxI1c is initially expressed at the early neurula stage in an epidermal ring around the neural field. Subsequent expression is found to be increased, and is exclusively localised to placodal precursor cells. The placodal expression remains until stage 40, when it is restricted to a distinct region in the lateral body wall behind the gills.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Dados de Sequência Molecular , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Xenopus laevis/metabolismo
14.
Gene Expr Patterns ; 5(2): 187-92, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15567714

RESUMO

Transcription factors of the Fox (fork head box) family are involved in cellular specification and determination processes. Here, we report on the isolation and first characterisation of two members of the FoxO subclass in Xenopus laevis, xFoxO1 and xFoxO3. These sequences exhibit 68% (67%) and 69% (70%) identity to their mouse (human) orthologues, respectively. Serine and threonine residues, which are phosphorylated upon insulin signalling, are evolutionarily conserved from frogs to mammals. xFoxO1 and xFoxO3 genes are maternally transcribed, but transcripts disappear during early cleavage stages. Zygotic transcription of both genes starts at the late neurula stages and transcripts accumulate at the end of organogenesis. While maternal transcripts of both genes are found within the animal half of the early embryo, zygotic transcripts show distinct patterns. xFoxO1 expression is observed in the pronephros, within head mesenchyme in front of the eye, within the branchial arches and in the liver primordium. At the late neurula, xFoxO3 is found to be specifically expressed in the anterior neural plate and in neural crest cells. Later, expression of xFoxO3 is observed in a variety of organs and tissues, like the head, the branchial arches and the somites.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Crista Neural/crescimento & desenvolvimento , Proteínas de Xenopus/biossíntese , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Crista Neural/metabolismo , Organogênese , Fosforilação , Homologia de Sequência de Aminoácidos , Proteínas de Xenopus/genética , Xenopus laevis/embriologia
15.
Dev Growth Differ ; 38(3): 233-246, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37281879

RESUMO

Determination (inducing) factors, the extracellular matrix, signaling pathways, transcription factors and genes interact in pattern formation and neural induction. Genes can either be activated or repressed. The animalvegetal and dorso-ventral polarities are determined in very early developmental stages. Factors of the TGF-ß superfamily in a graded distribution are involved in the determination of endoderm, mesoderm and ectoderm. The differentiation of mesoderm also depends on the animal ectoderm. Neural inducing factors have been partially purified.

16.
Stem Cells Dev ; 21(8): 1225-38, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21967637

RESUMO

Nanog is a homeodomain transcription factor associated with the acquisition of pluripotency. Genome analyses of lower and higher vertebrates revealed that the existence of Nanog is restricted to gnathostomata but absent from agnatha and invertebrates. To elucidate the function of Nanog in nonmammalia, we identified the Danio rerio ortholog of Nanog and characterized its role in gain and loss of function experiments. We found Nanog to be crucial for survival of early zebrafish embryos, because depletion of Nanog led to gastrulation defects with subsequent lethality. Mouse Nanog overexpression could rescue these defects. Vice versa, zebrafish Nanog was found to promote proliferation and to inhibit differentiation of mouse embryonic stem cells in the absence of leukemia inhibitory factor. These findings indicate functional conservation of Nanog from teleost fishes to mammals. However, Nanog was lost in the genome of the anurans Xenopus laevis and Xenopus tropicalis. Phylogenetic analysis revealed that deletion probably occurred in a common anuran ancestor along with chromosomal translocations. The closest homologs of Nanog in Xenopus are the Vent proteins. We, therefore, investigated whether the Xvent genes might substitute for Nanog function in Xenopus. Although we found some similarities in phenotypes after overexpression and in the regulation of several marker genes, Xvent1/2 and Nanog cannot substitute each other. Depletion of Nanog in zebrafish cannot be rescued by ectopic expression of Xvent, and Xvent depletion in Xenopus cannot be overcome by ectopic expression of zebrafish Nanog.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Variação Genética/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Fator Inibidor de Leucemia/farmacologia , Camundongos , Proteína Homeobox Nanog , Ligação Proteica/efeitos dos fármacos , Especificidade da Espécie , Proteínas de Xenopus/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
Mech Dev ; 126(11-12): 974-89, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19772919

RESUMO

The maintenance of pluripotency in mammalian embryonic stem cells depends upon the expression of regulatory genes like Oct3/4 and Sox2. While homologues of these genes are also characterized in non-mammalian vertebrates, like birds, amphibians and fish, existence and function of developmental pluripotency associated genes (Dppa) in lower vertebrates have not yet been reported. Here we describe a Dppa2/4-like gene, XDppa2/4, in Xenopus. The protein contains a SAP domain and a conserved C-terminal region. Overexpression of XDppa2/4, murine Dppa2 or Dppa4 produces similar phenotypes (defects in blastopore closure), while injection of XDppa2/4 morpholino generates a loss of blastopore closure and neural fold formation. Embryos die up to tailbud stage. mDppa2 (but not mDppa4) rescues blastopore closure and neurulation defects caused by XDppaMO, but does not prevent subsequent death of embryos. Although XDppa2/4 exhibits a Dppa-like expression pattern and is indispensable for embryogenesis, analyses of various marker genes make its role as a pluripotency factor rather unlikely. Both the gain and loss of function effects until the end of neurulation are caused by the conserved C-terminal region but not by the SAP domain. The SAP domain is required for association of XDppa2/4 to chromatin and for embryonic survival at later stages of development suggesting epigenetic programming events.


Assuntos
Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Sequência de Aminoácidos , Animais , Apoptose , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Gastrulação/fisiologia , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Hibridização In Situ , Injeções , Camundongos , Dados de Sequência Molecular , Neurulação/fisiologia , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Frações Subcelulares/metabolismo , Xenopus/genética , Proteínas de Xenopus/genética
18.
Dev Dyn ; 238(3): 755-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19235717

RESUMO

Hox genes are key players in defining positional information along the main body axis of vertebrate embryos. In Xenopus laevis, Hoxc6 was the first homeobox gene isolated. It encodes two isoforms. We analyzed in detail their spatial and temporal expression pattern during early development. One major expression domain of both isoforms is the spinal cord portion of the neural tube. Within the spinal cord and its populations of primary neurons, Hox genes have been found to play a crucial role for defining positional information. Here we report that a loss-of-function of either one of the Hoxc6 products does not affect neural induction, the expression of general neural markers is not modified. However, Hoxc6 does widely affect the formation of primary neurons within the developing neural tissue. Manipulations of Hoxc6 expression severly changes the expression of the neuronal markers N-tubulin and Islet-1. Formation of primary neurons and formation of cranial nerves are affected. Hence, Hoxc6 functions are not restricted to the expected role in anterior-posterior pattern formation, but they also regulate N-tubulin, thereby having an effect on the initial formation of primary neurons in Xenopus laevis embryos.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Neurogênese/genética , Transcrição Gênica/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Biomarcadores , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/genética , Placa Neural/embriologia , Placa Neural/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Receptores Notch/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética
19.
Mech Dev ; 125(3-4): 207-22, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18191552

RESUMO

IRE1 is an atypical serine/threonine kinase transmembrane protein with RNase activity. In the unfolded protein response (UPR), they function as proximal sensor of the unfolded proteins in the endoplasmic reticulum (ER). Upon activation by ER stress, IRE1 performs an unconventional cytoplasmic splicing of XBP1 pre-mRNA and thus allows the synthesis of active XBP1, which activates UPR target genes to restore the homeostasis of the ER. IRE1/XBP1 signaling is hence essential for UPR but its function during embryogenesis is yet unknown. The transcripts of the two isoforms of IRE1 in Xenopus, xIRE1alpha and xIRE1beta are differentially expressed during embryogenesis. We found that xIRE1beta is sufficient for cytoplasmic splicing of xXBP1 pre-mRNA. Although gain of xIRE1beta function had no significant effect on Xenopus embryogenesis, overexpression of both, xIRE1beta and xXBP1 pre-mRNA, inhibits activin A induced mesoderm formation, suggesting that an enhanced activity of the IRE1/XBP1 pathway represses mesoderm formation. Surprisingly, while loss of XBP1 function promotes mesoderm formation, the loss of IRE1beta function led to a reduction of mesoderm formation, probably by action of IRE1 being different from the IRE1/XBP1 pathway. Therefore, both gain and loss of function studies demonstrate that IRE1 is required for mesoderm formation in Xenopus embryos.


Assuntos
Mesoderma/crescimento & desenvolvimento , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleases/metabolismo , Xenopus/embriologia , Sequência de Aminoácidos , Animais , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Expressão Gênica , Mesoderma/metabolismo , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Ribonucleases/genética , Deleção de Sequência , Fatores de Transcrição
20.
J Biol Chem ; 283(49): 34168-77, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18922797

RESUMO

The balance between differentiation signals and signals maintaining the undifferentiated state of embryonic cells ensures proper formation of germ layers. The nodal/activin pathway represents one of the major signaling chains responsible for the differentiation of embryonic cells into mesodermal and endodermal germ layers, while Oct4 is one of the major players in the maintenance of an undifferentiated state. Here we show that Oct25, an Oct4 homologue in Xenopus, antagonizes the activity of nodal/activin signaling by inhibiting the transcription of its target genes, Gsc and Mix2. The inhibitory effect is achieved by forming repression complexes on the promoters of Gsc and Mix2 between Oct25 and the signal transducers of the nodal/activin pathway, WBSCR11, FAST1, and Smad2. We have analyzed the significance of the Oct binding site for its inhibitory effect within the Gsc promoter. Albeit VP16-Oct25 fusion protein demonstrated a stimulating effect and EVE-Oct25 revealed a repression effect on an artificial reporter that is composed of eight repeats of Oct binding motifs, both fusions, like wild-type Oct25, inhibited mesendoderm formation and the activity of Gsc and Mix2 promoters. These results suggest that the regulatory effect of Oct25 on the expression of Gsc and Mix2 is mediated by specific protein/protein interactions. Furthermore, we demonstrate that histone deacetylase activities are not required for the inhibitory effect of Oct25. Our results provide a novel view in that Oct25 controls the nodal/activin pathway and thus maintains the undifferentiated state of embryonic cells in preventing them from premature differentiation.


Assuntos
Ativinas/metabolismo , Regulação da Expressão Gênica , Proteína Nodal/fisiologia , Fatores do Domínio POU/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Sequência de Bases , Endoderma/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Gástrula/metabolismo , Gastrulação , Histona Desacetilases/metabolismo , Dados de Sequência Molecular , Proteína Nodal/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA