Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850604

RESUMO

In this paper, an original construction of a vehicle vibration damper controlled by means of a valve based on piezoelectric actuator is presented and investigated. The presented valve allows us to control dissipation characteristics of the damper faster than in other solutions adjusting the size of the gap through which the oil flows between the chambers of the damper. The article also presents the results of the experimental investigation of the above-mentioned damper showing the possibility of changing the value of the damping force five times in about 10 ms by changing the voltage supplying the piezoelectric actuator. Based on these results, dissipative characteristics were determined which enabled the identification of the parameters of the damper numerical model. The article also presents the results of numerical investigations a vehicle model equipped with the developed dampers. The results showed that the developed damper controlled by the use of the piezoelectric actuator can significantly affect vehicle traffic safety by reducing the variation of vertical forces acting on the wheels. The results obtained are so promising that the authors undertook preparations to conduct road tests of a vehicle equipped with the developed dampers.

2.
Sensors (Basel) ; 21(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069988

RESUMO

In this work an original construction of a vibration damper controlled by means of a valve with a short time of operation lag is presented. The valve-controlling properties of the damper regulates the flow of fluid between the chambers of the damper and was constructed using piezoelectric actuators, whose characteristic feature is the possibility to change dimensions, e.g., length, under the influence of voltage. As a result, by changing voltage it is possible to control the throttle of the flow by changing the width of a gap, which influences a change of damping forces. Such a solution enables a quicker change of damping forces than in other kinds of controlled damper. Due to the obtained properties, the damper may be applied to reduce the vibrations of vehicles and machines that undergo quick-change loads. In the article, the results of experimental studies of the aforementioned damper are presented. Based on the results, dissipative characteristics were determined. Also, results of numerical studies comprising the development of a numerical model of a controlled piezoelectric damper are shown. Results of numerical studies, as well as experimental studies, are presented in the form of dissipative characteristics. Comparison of results of numerical and experimental studies confirms the possibility to apply this kind of construction in semi-active systems of vibration reduction of vehicles and machines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA