Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(7): e202300833, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306174

RESUMO

The styrene monooxygenase, a two-component enzymatic system for styrene epoxidation, was characterised through the study of Fus-SMO - a chimera resulting from the fusion of StyA and StyB using a flexible linker. Notably, it remains debated whether the transfer of FADH2 from StyB to StyA occurs through diffusion, channeling, or a combination of both. Fus-SMO was identified as a trimer with one bound FAD molecule. In silico modelling revealed a well-distanced arrangement (45-50 Å) facilitated by the flexible linker's loopy structure. Pre-steady-state kinetics elucidated the FADox reduction intricacies (kred=110 s-1 for bound FADox), identifying free FADox binding as the rate-determining step. The aerobic oxidation of FADH2 (kox=90 s-1) and subsequent decomposition to FADox and H2O2 demonstrated StyA's protective effect on the bound hydroperoxoflavin (kdec=0.2 s-1) compared to free cofactor (kdec=1.8 s-1). At varied styrene concentrations, kox for FADH2 ranged from 80 to 120 s-1. Studies on NADH consumption vs. styrene epoxidation revealed Fus-SMO's ability to achieve quantitative coupling efficiency in solution, surpassing natural two-component SMOs. The results suggest that Fus-SMO exhibits enhanced FADH2 channelling between subunits. This work contributes to comprehending FADH2 transfer mechanisms in SMO and illustrates how protein fusion can elevate catalytic efficiency for biocatalytic applications.


Assuntos
Peróxido de Hidrogênio , Oxigenases , Oxigenases/metabolismo , Estireno , Simulação por Computador , Cinética , Flavina-Adenina Dinucleotídeo/metabolismo
2.
Chembiochem ; : e202400458, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037928

RESUMO

Asymmetric hydrogenation of alkene moieties is important for the synthesis of chiral molecules, but achieving high stereoselectivity remains a challenge. Biocatalysis using ene-reductases (EReds) offers a viable solution. However, the need for NAD(P)H cofactors limits large-scale applications. Here, we explored an electrochemical alternative for recycling flavin-containing EReds using methyl viologen as a mediator. For this, we built a bio-electrocatalytic setup with an H-type glass reactor cell, proton exchange membrane, and carbon cloth electrode. Experimental results confirm the mediator's electrochemical reduction and enzymatic consumption. Optimization showed increased product concentration at longer reaction times with better reproducibility within 4-6 h. We tested two enzymes, Pentaerythritol Tetranitrate Reductase (PETNR) and the Thermostable Old Yellow Enzyme (TOYE), using different alkene substrates. TOYE showed higher productivity for the reduction of 2-cyclohexen-1-one (1.20 mM h-1), 2-methyl-2-cyclohexen-1-one (1.40 mM h-1) and 2-methyl-2-pentanal (0.40 mM h-1), with enantiomeric excesses ranging from 11% to 99%. PETNR outperformed TOYE in terms of enantioselectivity for the reduction of 2-methyl-2-pentanal (ee 59±7% (S)). Notably, TOYE achieved promising results also in reducing ketoisophorone, a challenging substrate, with similar enantiomeric excess compared to published values using NADH.

3.
Chembiochem ; 23(17): e202200346, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35723909

RESUMO

Peroxidase enzymes enable the construction of electrochemical sensors for highly sensitive and selective quantitative detection of various molecules, pathogens and diseases. Herein, we describe the immobilization of a peroxidase from Bacillus s. (BsDyP) on electrochemically reduced graphene oxide (ERGO) deposited on indium tin oxide (ITO) and polyethylene terephthalate (PET) layers. XRD, SEM, AFM, FT-IR and Raman characterization of the sensor confirmed its structural integrity and a higher enzyme surface occupancy. The BsDyP-ERGO/ITO/PET electrode performed better than other horseradish peroxidase-based electrodes, as evinced by an improved electrochemical response in the nanomolar range (linearity 0.05-280 µM of H2 O2 , LOD 32 nM). The bioelectrode was mechanically robust, active in the 3.5-6 pH range and exhibited no loss of activity upon storage for 8 weeks at 4 °C.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Eletroquímicas , Eletrodos , Grafite/química , Peroxidase , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Chembiochem ; 23(22): e202200549, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36173971

RESUMO

Herein, we show how the merge of biocatalysis with flow chemistry aided by 3D-printing technologies can facilitate organic synthesis. This concept was exemplified for the reductive amination of benzaldehyde catalysed by co-immobilised amine dehydrogenase and formate dehydrogenase in a continuous flow micro-reactor. For this purpose, we investigated enzyme co-immobilisation by covalent binding, or ion-affinity binding, or entrapment. Entrapment in an agarose hydrogel turned out to be the most promising solution for this biocatalytic reaction. Therefore, we developed a scalable and customisable approach whereby an agarose hydrogel containing the co-entrapped dehydrogenases was cast in a 3D-printed mould. The reactor was applied to the reductive amination of benzaldehyde in continuous flow over 120 h and afforded 47 % analytical yield and a space-time yield of 7.4 g L day-1 using 0.03 mol% biocatalysts loading. This work also exemplifies how rapid prototyping of enzymatic reactions in flow can be achieved through 3D-printing technology.


Assuntos
Aminas , Benzaldeídos , Aminação , Biocatálise , Sefarose , Aminas/metabolismo , Oxirredutases/metabolismo , Enzimas Imobilizadas/metabolismo , Impressão Tridimensional , Hidrogéis
5.
Chembiochem ; 22(13): 2345-2350, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33880862

RESUMO

We present a one-pot cascade for the synthesis of phenylpropanolamines (PPAs) in high optical purities (er and dr up to >99.5 %) and analytical yields (up to 95 %) by using 1-phenylpropane-1,2-diols as key intermediates. This bioamination entails the combination of an alcohol dehydrogenase (ADH), an ω-transaminase (ωTA) and an alanine dehydrogenase to create a redox-neutral network, which harnesses the exquisite and complementary regio- and stereo-selectivities of the selected ADHs and ωTAs. The requisite 1-phenylpropane-1,2-diol intermediates were obtained from trans- or cis-ß-methylstyrene by combining a styrene monooxygenase with epoxide hydrolases. Furthermore, in selected cases, the envisioned cascade enabled to obtain the structural isomer (1S,2R)-1-amino-1-phenylpropan-2-ol in high optical purity (er and dr >99.5 %). This is the first report on an enzymatic method that enables to obtain all of the four possible PPA stereoisomers in great enantio- and diastereo-selectivity.


Assuntos
Fenilpropanolamina/química , Estirenos/química , Alanina Desidrogenase/metabolismo , Álcool Desidrogenase/metabolismo , Álcoois/química , Biocatálise , Oxirredução , Fenilpropanolamina/metabolismo , Estereoisomerismo , Estirenos/metabolismo , Transaminases/metabolismo
6.
Chemistry ; 27(10): 3315-3325, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33073866

RESUMO

The l-lysine-ϵ-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ϵ-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot "hydrogen-borrowing" cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing "alcohol aminase" activity.


Assuntos
Oxirredutases/metabolismo , Aminação , Aminas , Biocatálise
7.
Chembiochem ; 20(6): 800-812, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30489013

RESUMO

Biocatalytic asymmetric amination of ketones, by using amine dehydrogenases (AmDHs) or transaminases, is an efficient method for the synthesis of α-chiral primary amines. A major challenge is to extend amination to the synthesis of secondary and tertiary amines. Herein, for the first time, it is shown that AmDHs are capable of accepting other amine donors, thus giving access to enantioenriched secondary amines with conversions up to 43 %. Surprisingly, in several cases, the promiscuous formation of enantiopure primary amines, along with the expected secondary amines, was observed. By conducting practical laboratory experiments and computational experiments, it is proposed that the promiscuous formation of primary amines along with secondary amines is due to an unprecedented nicotinamide (NAD)-dependent formal transamination catalysed by AmDHs. In nature, this type of mechanism is commonly performed by pyridoxal 5'-phosphate aminotransferase and not by dehydrogenases. Finally, a catalytic pathway that rationalises the promiscuous NAD-dependent formal transamination activity and explains the formation of the observed mixture of products is proposed. This work increases the understanding of the catalytic mechanism of NAD-dependent aminating enzymes, such as AmDHs, and will aid further research into the rational engineering of oxidoreductases for the synthesis of α-chiral secondary and tertiary amines.


Assuntos
Aminas/síntese química , Enzimas Multifuncionais/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/química , Transaminases/química , Aminação , Biocatálise , Domínio Catalítico , Geobacillus stearothermophilus/enzimologia , Modelos Químicos , Simulação de Acoplamento Molecular , NAD/química , Rhodococcus/enzimologia , Estereoisomerismo
8.
Bioorg Chem ; 84: 384-388, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30543985

RESUMO

Phenolic compounds present in extra virgin olive oil have recently attracted considerable attention due to their pharmacological activities. Among them oleacein (3,4-DHPEA-EDA), structurally related to oleochantal (4-HPEA-EDA), is one of the most studied. 3,4-DHPEA-EDA has been synthesized through decarboxylation of demethyloleuropein catalyzed by Er(OTf)3. Demethyloleuropein is extracted from black olives drupes in very limited amounts and only in particular periods of the year. The availability of demethyloleuropein could be increased by a selective hydrolysis of the methyl ester moiety of oleuropein, a secoiridoid present in large amount in olive leaves. In this work we describe a new enzymatic method for carrying out a selective hydrolysis of oleuropein via the screening of a panel of hydrolases (lipases, esterases and proteases). Among all the enzymes tested the best results was obtained using α-chymotrypsyn from bovine pancreas as biocatalyst, thus revealing a classic example of catalytic enzyme promiscuity.


Assuntos
Hidrolases/metabolismo , Glucosídeos Iridoides/metabolismo , Iridoides/metabolismo , Animais , Biocatálise , Bovinos , Quimotripsina/metabolismo , Hidrólise , Glucosídeos Iridoides/química , Iridoides/química , Olea/química , Olea/metabolismo , Pâncreas/enzimologia
9.
Chembiochem ; 19(7): 679-686, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378090

RESUMO

The styrene monooxygenase (SMO) system from Pseudomonas sp. consists of two enzymes (StyA and StyB). StyB catalyses the reduction of FAD at the expense of NADH. After the transfer of FADH2 from StyB to StyA, reaction with O2 generates FAD-OOH, which is the epoxidising agent. The wastage of redox equivalents due to partial diffusive transfer of FADH2 , the insolubility of recombinant StyB and the impossibility of expressing StyA and StyB in a 1:1 molar ratio reduce the catalytic efficiency of the natural system. Herein we present a chimeric SMO (Fus-SMO) that was obtained by genetic fusion of StyA and StyB through a flexible linker. Thanks to a combination of: 1) balanced and improved expression levels of reductase and epoxidase units, and 2) intrinsically higher specific epoxidation activity of Fus-SMO in some cases, Escherichia coli cells expressing Fus-SMO possess about 50 % higher activity for the epoxidation of styrene derivatives than E. coli cells coexpressing StyA and StyB as discrete enzymes. The epoxidation activity of purified Fus-SMO was up to three times higher than that of the two-component StyA/StyB (1:1, molar ratio) system and up to 110 times higher than that of the natural fused SMO. Determination of coupling efficiency and study of the influence of O2 pressure were also performed. Finally, Fus-SMO and formate dehydrogenase were coexpressed in E. coli and applied as a self-sufficient biocatalytic system for epoxidation on greater than 500 mg scale.


Assuntos
Compostos de Epóxi/síntese química , Oxigenases/química , Proteínas Recombinantes de Fusão/química , Biocatálise , Escherichia coli , Formiato Desidrogenases/química , Oxirredução , Oxigênio/química , Pseudomonas/enzimologia , Estirenos/química
10.
Angew Chem Int Ed Engl ; 57(43): 14240-14244, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30176101

RESUMO

We report an unprecedented catalytically promiscuous activity of the copper-dependent enzyme galactose oxidase. The enzyme catalyses the one-pot conversion of alcohols into the related nitriles under mild reaction conditions in ammonium buffer, consuming ammonia as the source of nitrogen and dioxygen (from air at atmospheric pressure) as the only oxidant. Thus, this green method does not require either cyanide salts, toxic metals, or undesired oxidants in stoichiometric amounts. The substrate scope of the reaction includes benzyl and cinnamyl alcohols as well as 4- and 3-pyridylmethanol, giving access to valuable chemical compounds. The oxidation proceeds through oxidation from alcohol to aldehyde, in situ imine formation, and final direct oxidation to nitrile.


Assuntos
Ar , Álcoois/química , Amônia/química , Galactose Oxidase/química , Nitrilas/síntese química , Aldeídos/química , Catálise , Oxirredução
11.
Org Biomol Chem ; 15(39): 8313-8325, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28936532

RESUMO

The direct and efficient conversion of alcohols into amines is a pivotal transformation in chemistry. Here, we present an artificial, oxidation-reduction, biocatalytic network that employs five enzymes (alcohol dehydrogenase, NADP-oxidase, catalase, amine dehydrogenase and formate dehydrogenase) in two concurrent and orthogonal cycles. The NADP-dependent oxidative cycle converts a diverse range of aromatic and aliphatic alcohol substrates to the carbonyl compound intermediates, whereas the NAD-dependent reductive aminating cycle generates the related amine products with >99% enantiomeric excess (R) and up to >99% conversion. The elevated conversions stem from the favorable thermodynamic equilibrium (K'eq = 1.88 × 1042 and 1.48 × 1041 for the amination of primary and secondary alcohols, respectively). This biocatalytic network possesses elevated atom efficiency, since the reaction buffer (ammonium formate) is both the aminating agent and the source of reducing equivalents. Additionally, only dioxygen is needed, whereas water and carbonate are the by-products. For the oxidative step, we have employed three variants of the NADP-dependent alcohol dehydrogenase from Thermoanaerobacter ethanolicus and we have elucidated the origin of the stereoselective properties of these variants with the aid of in silico computational models.

12.
Chim Oggi ; 35(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29515288

RESUMO

The exquisite chemoselectivity and the intrinsic compatibility of enzymes have been widely exploited during the past decade for the development of multi-step biocatalytic reactions in one-pot. In this context, hydrogen-borrowing cascades permit to maximise the atom-efficiency through the internal recycling of redox equivalents, which avoids the use of additional oxidants or reductants. Here, we describe the state-of-the-art in the field of biocatalytic hydrogen-borrowing cascades and provide a future perspective for a wider implementation in organic synthesis.

13.
J Am Chem Soc ; 138(3): 1033-9, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26727612

RESUMO

The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the "ene" reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. "Better-than-Nature" biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost.


Assuntos
Materiais Biomiméticos/metabolismo , NADP/metabolismo , Niacinamida/metabolismo , Biocatálise , Materiais Biomiméticos/química , Estrutura Molecular , Niacinamida/química , Oxirredução
14.
Biochim Biophys Acta ; 1844(12): 2298-305, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25263158

RESUMO

The crystal structure of a putative protease from Bacteroides thetaiotaomicron (ppBat) suggested the presence of a zinc ion in each protomer of the dimer as well as a flavin in the dimer interface. Since the chemical identity of the flavin and the exact mode of binding remained unclear, we have determined the crystal structure of ppBat in complex with riboflavin. The obtained structure revealed that the isoalloxazine ring is sandwiched between two tryptophan residues (Trp164) from both chains and adopts two alternate orientations with the N(10)-ribityl side chain protruding from the binding site in opposite directions. In order to characterize the zinc-binding site, we generated two single variants and one double variant in which the two coordinating cysteine residues (Cys74 and Cys111) were replaced by alanine. All three variants were unable to bind zinc demonstrating that both cysteine residues are essential for binding. Moreover, the lack of zinc binding also resulted in drastically reduced thermal stability (11-15°C). A similar effect was obtained when wild-type protein was incubated with EDTA supporting the conclusion that the zinc-binding site plays an important structural role in ppBat. On the other hand, attempts to identify proteolytic activity failed suggesting that the zinc may not act as a catalytic center in ppBat. Structurally similar zinc binding motives in other proteins were also found to play a structural rather than catalytic role and hence it appears that neither the flavin nor the zinc binding sites possess a catalytic function in ppBat.

15.
Org Biomol Chem ; 13(1): 223-33, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25372591

RESUMO

Ene-reductases (ERs) are flavin dependent enzymes that catalyze the asymmetric reduction of activated carbon-carbon double bonds. In particular, α,ß-unsaturated carbonyl compounds (e.g. enals and enones) as well as nitroalkenes are rapidly reduced. Conversely, α,ß-unsaturated esters are poorly accepted substrates whereas free carboxylic acids are not converted at all. The only exceptions are α,ß-unsaturated diacids, diesters as well as esters bearing an electron-withdrawing group in α- or ß-position. Here, we present an alternative approach that has a general applicability for directly obtaining diverse chiral α-substituted carboxylic acids. This approach combines two enzyme classes, namely ERs and aldehyde dehydrogenases (Ald-DHs), in a concurrent reductive-oxidative biocatalytic cascade. This strategy has several advantages as the starting material is an α-substituted α,ß-unsaturated aldehyde, a class of compounds extremely reactive for the reduction of the alkene moiety. Furthermore no external hydride source from a sacrificial substrate (e.g. glucose, formate) is required since the hydride for the first reductive step is liberated in the second oxidative step. Such a process is defined as a hydrogen-borrowing cascade. This methodology has wide applicability as it was successfully applied to the synthesis of chiral substituted hydrocinnamic acids, aliphatic acids, heterocycles and even acetylated amino acids with elevated yield, chemo- and stereo-selectivity. A systematic methodology for optimizing the hydrogen-borrowing two-enzyme synthesis of α-chiral substituted carboxylic acids was developed. This systematic methodology has general applicability for the development of diverse hydrogen-borrowing processes that possess the highest atom efficiency and the lowest environmental impact.


Assuntos
Aldeídos/química , Biocatálise , Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntese química , Hidrogênio/química , Biotransformação , Ácidos Carboxílicos/metabolismo , Técnicas de Química Sintética , NAD/metabolismo , NADPH Desidrogenase/metabolismo , Estereoisomerismo
16.
Biochemistry ; 52(25): 4288-95, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23713585

RESUMO

The Gram-positive bacterium Streptomyces davawensis is the only organism known to produce the antibiotic roseoflavin. Roseoflavin is a structural riboflavin analogue and is converted to the flavin mononucleotide (FMN) analogue roseoflavin mononucleotide (RoFMN) by flavokinase. FMN-dependent homodimeric azobenzene reductase (AzoR) (EC 1.7.1.6) from Escherichia coli was analyzed as a model enzyme. In vivo and in vitro experiments revealed that RoFMN binds to the AzoR apoenzyme with an even higher affinity compared to that of the "natural" cofactor FMN. Structural analysis (at a resolution of 1.07 Å) revealed that RoFMN binding did not affect the overall topology of the enzyme and also did not interfere with dimerization of AzoR. The AzoR-RoFMN holoenzyme complex was found to be less active (30% of AzoR-FMN activity) in a standard assay. We provide evidence that the different physicochemical properties of RoFMN are responsible for its reduced cofactor activity.


Assuntos
Proteínas de Escherichia coli/química , NADH NADPH Oxirredutases/química , Riboflavina/análogos & derivados , Apoenzimas/química , Apoenzimas/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , NADH NADPH Oxirredutases/metabolismo , Ligação Proteica , Multimerização Proteica , Riboflavina/química , Riboflavina/metabolismo
17.
J Biol Chem ; 287(33): 27490-8, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22718753

RESUMO

The structure of a putative protease from Bacteroides thetaiotaomicron features an unprecedented binding site for flavin mononucleotide. The flavin isoalloxazine ring is sandwiched between two tryptophan residues in the interface of the dimeric protein. We characterized the recombinant protein with regard to its affinity for naturally occurring flavin derivatives and several chemically modified flavin analogs. Dissociation constants were determined by isothermal titration calorimetry. The protein has high affinity to naturally occurring flavin derivatives, such as riboflavin, FMN, and FAD, as well as lumichrome, a photodegradation product of flavins. Similarly, chemically modified flavin analogs showed high affinity to the protein in the nanomolar range. Replacement of the tryptophan by phenylalanine gave rise to much weaker binding, whereas in the tryptophan to alanine variant, flavin binding was abolished. We propose that the protein is an unspecific scavenger of flavin compounds and may serve as a storage protein in vivo.


Assuntos
Proteínas de Bactérias/química , Bacteroides/enzimologia , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Peptídeo Hidrolases/química , Riboflavina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/genética , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Genômica , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Riboflavina/genética , Riboflavina/metabolismo
18.
Adv Mater ; 35(47): e2306615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738281

RESUMO

Recyclable fluorescence assays that can be stored at room temperature would greatly benefit biomedical diagnostics by bringing sustainability and cost-efficiency, especially for point-of-care serodiagnostics in developing regions. Here, a general strategy is proposed to generate recyclable fluorescent probes by using engineered enzymes with enhanced thermo-/chemo-stability, which maintains an outstanding serodiagnostic performance (accuracy >95%) after 10 times of recycling as well as after storage at elevated temperatures (37 °C for 10 days). With these three outstanding properties, recyclable fluorescent probes can be designed to detect various biomarkers of clinical importance by using different enzymes.


Assuntos
Diagnóstico , Enzimas , Corantes Fluorescentes , Biomarcadores
19.
Chem Commun (Camb) ; 59(52): 8071-8074, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37285304

RESUMO

We constructed a high-performance biosensor for detecting uric acid by immobilizing an engineered urate oxidase on gold nanoparticles deposited on a carbon-glass electrode. This biosensor showed a low limit-of-detection (9.16 nM), a high sensitivity (14 µA/µM), a wide range of linearity (50 nM-1 mM), and more than 28 days lifetime.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Urato Oxidase , Ouro , Carbono , Eletrodos , Técnicas Eletroquímicas , Enzimas Imobilizadas
20.
ACS Catal ; 12(23): 14459-14475, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504913

RESUMO

The efficient asymmetric catalytic synthesis of amines containing more than one stereogenic center is a current challenge. Here, we present a biocatalytic cascade that combines ene-reductases (EReds) with imine reductases/reductive aminases (IReds/RedAms) to enable the conversion of α,ß-unsaturated ketones into primary, secondary, and tertiary amines containing two stereogenic centers in very high chemical purity (up to >99%), a diastereomeric ratio, and an enantiomeric ratio (up to >99.8:<0.2). Compared with previously reported strategies, our strategy could synthesize two, three, or even all four of the possible stereoisomers of the amine products while precluding the formation of side-products. Furthermore, ammonium or alkylammonium formate buffer could be used as the only additional reagent since it acted both as an amine donor and as a source of reducing equivalents. This was achieved through the implementation of an NADP-dependent formate dehydrogenase (FDH) for the in situ recycling of the NADPH coenzyme, thus leading to increased atom economy for this biocatalytic transformation. Finally, this dual-enzyme ERed/IRed cascade also exhibits a complementarity with the recently reported EneIRED enzymes for the synthesis of cyclic six-membered ring amines. The ERed/IRed method yielded trans-1,2 and cis-1,3 substituted cyclohexylamines in high optical purities, whereas the EneIRED method was reported to yield one cis-1,2 and one trans-1,3 enantiomer. As a proof of concept, when 3-methylcyclohex-2-en-1-one was converted into secondary and tertiary chiral amines with different amine donors, we could obtain all the four possible stereoisomer products. This result exemplifies the versatility of this method and its potential for future wider utilization in asymmetric synthesis by expanding the toolbox of currently available dehydrogenases via enzyme engineering and discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA