Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Entomol Exp Appl ; 162(1): 19-29, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30046183

RESUMO

Feeding damage to seedling cotton and peanut inflicted by adult and immature thrips may result in stunted growth and delayed maturity. Furthermore, adult thrips can transmit Tomato spotted wilt virus (TSWV) to seedling peanut, which reduces plant growth and yield. The objective of this research was to assess the efficacy of inert particle films, calcium carbonate or kaolin, in combination with conservation tillage, to reduce adult and immature thrips counts in cotton and peanut crops. Planting cotton or peanut into strip tillage utilizing a rolled rye winter cover crop significantly reduced immature thrips counts. Furthermore, plant damage ratings in cotton as well as TSWV incidence in peanut significantly decreased under conservation tillage. Aboveground cotton biomass and plant stand in cotton and peanut were unaffected by calcium carbonate or kaolin particle film applications. Within each week, immature thrips counts were unaffected by particle films, regardless of application rate. In cotton plots treated with kaolin, total Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) counts summed across weeks were significantly greater compared to the untreated control. For adult F. fusca counts at 3 weeks after planting, an interaction between tillage and particle film treatments was observed with fewer adult thrips in particle film and strip tillage treated peanut. Similarly, reduced TSWV incidence was observed in particle film-treated peanut grown using conservation tillage. Neither cotton nor peanut yields were affected by particle film treatments.

2.
Ecol Evol ; 13(4): e9966, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37013102

RESUMO

Interactions between invaders and resource availability may explain variation in their success or management efficacy. For widespread invaders, regional variation in plant response to nutrients can reflect phenotypic plasticity of the invader, genetic structure of invading populations, or a combination of the two. The wetland weed Alternanthera philoxeroides (alligatorweed) is established throughout the southeastern United States and California and has high genetic diversity despite primarily spreading clonally. Despite its history in the United States, the role of genetic variation for invasion and management success is only now being uncovered. To better understand how nutrients and genotype may influence A. philoxeroides invasion, we measured the response of plants from 26 A. philoxeroides populations (three cp haplotypes) to combinations of nitrogen (4 or 200 mg/L N) and phosphorus (0.4 or 40 mg/L P). We measured productivity (biomass accumulation and allocation), plant architecture (stem diameter and thickness, branching intensity), and foliar traits (toughness, dry matter content, percent N, and percent P). A short-term developmental assay was also conducted by feeding a subset of plants from the nutrient experiment to the biological control agent Agasicles hygrophila, to determine whether increased availability of N or P to its host influenced agent performance, as has been previously suggested. Alternanthera philoxeroides haplotype Ap1 was more plastic than other haplotypes in response to nutrient amendments, producing more than double the biomass from low to high N and 50%-68% higher shoot: root ratio than other haplotypes in the high N treatment. Alternanthera philoxeroides haplotypes differed in seven of 10 variables in response to increased N. We found no differences in short-term A. hygrophila development between haplotypes but mass was 23% greater in high than low N treatments. This study is the first to explore the interplay between nutrient availability, genetic variation, and phenotypic plasticity in invasive characteristics of the global invader, A. philoxeroides.

3.
Insects ; 12(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204761

RESUMO

Many weed biological control programs suffer from large-scale spatial variation in success due to restricted distributions or abundances of agents in temperate climates. For some of the world's worst aquatic weeds, agents are established but overwintering conditions limit their survival in higher latitudes or elevations. The resulting need is for new or improved site- or region-specific biological control tools. Here, we review this challenge with a focus on low-temperature limitations of agents and propose a roadmap for improving success. Investigations across spatial scales, from global (e.g., foreign exploration), to local (selective breeding), to individual organisms (molecular modification), are discussed. A combination of traditional (foreign) and non-traditional (introduced range) exploration may lead to the discovery and development of better-adapted agent genotypes. A multivariate approach using ecologically relevant metrics to quantify and compare cold tolerance among agent populations is likely required. These data can be used to inform environmental niche modeling combined with mechanistic modeling of species' fundamental climate niches and life histories to predict where, when, and at what abundance agents will occur. Finally, synthetic and systems biology approaches in conjunction with advanced modern genomics, gene silencing and gene editing technologies may be used to identify and alter the expression of genes enhancing cold tolerance, but this technology in the context of weed biological control has not been fully explored.

4.
Environ Entomol ; 46(6): 1292-1298, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29028992

RESUMO

Since 2014, populations of the kudzu bug, Megacopta cribraria (F.) (Hemiptera: Plataspidae), have declined in the southeastern United States and seldom require treatment. This decline follows the discovery of Paratelenomus saccharalis (Dodd; Hymenoptera: Platygastridae), a non-native egg parasitoid. The objective of this project was to observe the temporal and spatial dynamics of P. saccharalis parasitism of kudzu bug egg masses in commercial soybean fields. Four fields were sampled weekly for kudzu bugs and egg masses at a density of one sample per 0.6 ha. Sampling commenced when soybean reached the R2 maturity stage and continued until no more egg masses were present. Responses including kudzu bugs, egg masses, and parasitism rates were analyzed using ANOVA, Spatial Analysis by Distance Indices (SADIE), and SaTScan spatial analysis software. Egg masses were collected from the field, held in the lab and monitored for emergence of kudzu bug nymphs or P. saccharalis. Kudzu bug populations were generally lower than previously reported in the literature and spatial aggregation was not consistently observed. Egg parasitism was first detected in early July and increased to nearly 40% in mid-August. Significant spatial patterns in parasitism were observed with spatio-temporal clusters being loosely associated with clusters of egg masses. There were no significant differences in parasitism rates between field margins and interiors, suggesting that P. saccharalis is an effective parasitoid of kudzu bug egg masses on a whole-field scale.


Assuntos
Heterópteros/fisiologia , Heterópteros/parasitologia , Interações Hospedeiro-Parasita , Himenópteros/fisiologia , Controle Biológico de Vetores , Animais , Georgia , Heterópteros/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/parasitologia , Ninfa/fisiologia , Estações do Ano , Glycine max/crescimento & desenvolvimento , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA