Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Annu Rev Genet ; 51: 335-359, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28892639

RESUMO

Understanding the development of vascular tissues in plants is crucial because the evolution of vasculature enabled plants to thrive on land. Various systems and approaches have been used to advance our knowledge about the genetic regulation of vasculature development, from the scale of single genes to networks. In this review, we provide a perspective on the major approaches used in studying plant vascular development, and we cover the mechanisms and genetic networks underlying vascular tissue specification, patterning, and differentiation.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Floema/genética , Proteínas de Plantas/genética , Plantas/genética , Xilema/genética , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Morfogênese/genética , Floema/crescimento & desenvolvimento , Floema/metabolismo , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas/metabolismo , Transcrição Gênica , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
2.
J Am Chem Soc ; 144(10): 4585-4593, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35157442

RESUMO

Nitrogen oxide (NOx) conversion is an important process for balancing the global nitrogen cycle. Distinct from the biological NOx transformation, we have devised a synthetic approach to this issue by utilizing a bifunctional metal catalyst for producing value-added products from NOx. Here, we present a novel catalysis based on a Ni pincer system, effectively converting Ni-NOx to Ni-NO via deoxygenation with CO(g). This is followed by transfer of the in situ generated nitroso group to organic substrates, which favorably occurs at the flattened Ni(I)-NO site via its nucleophilic reaction. Successful catalytic production of oximes from benzyl halides using NaNO2 is presented with a turnover number of >200 under mild conditions. In a key step of the catalysis, a nickel(I)-•NO species effectively activates alkyl halides, which is carefully evaluated by both experimental and theoretical methods. Our nickel catalyst effectively fulfills a dual purpose, namely, deoxygenating NOx anions and catalyzing C-N coupling.


Assuntos
Níquel , Catálise
3.
Proc Natl Acad Sci U S A ; 111(44): 15699-704, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331872

RESUMO

Arsenic (As) is a chronic poison that causes severe skin lesions and cancer. Rice (Oryza sativa L.) is a major dietary source of As; therefore, reducing As accumulation in the rice grain and thereby diminishing the amount of As that enters the food chain is of critical importance. Here, we report that a member of the Oryza sativa C-type ATP-binding cassette (ABC) transporter (OsABCC) family, OsABCC1, is involved in the detoxification and reduction of As in rice grains. We found that OsABCC1 was expressed in many organs, including the roots, leaves, nodes, peduncle, and rachis. Expression was not affected when plants were exposed to low levels of As but was up-regulated in response to high levels of As. In both the basal nodes and upper nodes, which are connected to the panicle, OsABCC1 was localized to the phloem region of vascular bundles. Furthermore, OsABCC1 was localized to the tonoplast and conferred phytochelatin-dependent As resistance in yeast. Knockout of OsABCC1 in rice resulted in decreased tolerance to As, but did not affect cadmium toxicity. At the reproductive growth stage, the As content was higher in the nodes and in other tissues of wild-type rice than in those of OsABCC1 knockout mutants, but was significantly lower in the grain. Taken together, our results indicate that OsABCC1 limits As transport to the grains by sequestering As in the vacuoles of the phloem companion cells of the nodes in rice.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Arsênio/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Sementes/metabolismo , Regulação para Cima , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico Ativo/genética , Cádmio/metabolismo , Oryza/citologia , Oryza/genética , Floema/citologia , Floema/metabolismo , Sementes/citologia , Sementes/genética
4.
Proc Natl Acad Sci U S A ; 111(19): 7150-5, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24778257

RESUMO

Cytokinins are phytohormones that induce cytokinesis and are essential for diverse developmental and physiological processes in plants. Cytokinins of the trans-zeatin type are mainly synthesized in root vasculature and transported to the shoot, where they regulate shoot growth. However, the mechanism of long-distance transport of cytokinin was hitherto unknown. Here, we report that the Arabidopsis ATP-binding cassette (ABC) transporter subfamily G14 (AtABCG14) is mainly expressed in roots and plays a major role in delivering cytokinins to the shoot. Loss of AtABCG14 expression resulted in severe shoot growth retardation, which was rescued by exogenous trans-zeatin application. Cytokinin content was decreased in the shoots of atabcg14 plants and increased in the roots, with consistent changes in the expression of cytokinin-responsive genes. Grafting of atabcg14 scions onto wild-type rootstocks restored shoot growth, whereas wild-type scions grafted onto atabcg14 rootstocks exhibited shoot growth retardation similar to that of atabcg14. Cytokinin concentrations in the xylem are reduced by ∼90% in the atabcg14 mutant. These results indicate that AtABCG14 is crucial for the translocation of cytokinin to the shoot. Our results provide molecular evidence for the long-distance transport of cytokinin and show that this transport is necessary for normal shoot development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Citocininas/biossíntese , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Transdução de Sinais/fisiologia
5.
Plant Biotechnol J ; 14(11): 2158-2167, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27133096

RESUMO

Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C. reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a > 20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C. reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae.


Assuntos
Aciltransferases/genética , Chlamydomonas/enzimologia , Microalgas/química , Microalgas/genética , Plastídeos/enzimologia , Microalgas/metabolismo , Óleos de Plantas/metabolismo
6.
Biochem Soc Trans ; 43(5): 924-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517905

RESUMO

Plant hormones (phytohormones) integrate endogenous and exogenous signals thus synchronizing plant growth with environmental and developmental changes. Similar to animals, phytohormones have distinct source and target tissues, hence controlled transport and focused targeting are required for their functions. Many evidences accumulated in the last years about the regulation of long-distance and directional transport of phytohormones. ATP-binding cassette (ABC) transporters turned out to play major roles in routing phytohormones not only in the plant body but also towards the outer environment. The ABCG-type proteins ABCG25 and ABCG40 are high affinity abscisic acid (ABA) transporters. ABCG14 is highly co-expressed with cytokinin biosynthesis and is the major root-to-shoot cytokinin transporter. Pleiotropic drug resistance1 (PDR1) from Petunia hybrida transports strigolactones (SLs) from the root tip to the plant shoot but also outside to the rhizosphere, where SLs are the main attractants to mycorrhizal fungi. Last but not least, ABCG36 and ABCG37 possibly play a dual role in coumarine and IBA transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Modelos Biológicos , Estrutura Molecular , Família Multigênica , Reguladores de Crescimento de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
7.
Plant Cell Environ ; 38(11): 2327-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25854544

RESUMO

Proteins containing a placenta-specific 8 domain (PLAC8) function as major organ size regulators in Solanum lycopersicum and Zea may, and putative metal ion transporters in Arabidopsis thaliana, Oryza sativa and Brassica juncea. However, it is unknown how PLAC8 domain-containing proteins fulfill such diverse roles. Here, we found that plant cadmium resistance 1 (PCR1) influences both zinc (Zn) accumulation and grain weight in rice. OsPCR1 knockout and knockdown lines produced lighter grains than the wild type, while OsPCR1 overexpression lines produced heavier grains. Furthermore, the grains of OsPCR1 knockdown lines exhibited substantially higher Zn and lower cadmium (Cd) concentrations than the control, as did yeast heterologously expressing OsPCR1. Through sequence analysis, we showed that the amino acid sequence of japonica-type PCR1 was distinct from that of indica-type and wild rice accessions. This difference was correlated with distinct Zn-related phenotypes. Japonica-type PCR1 had a shorter N-terminus than did PCR1 in the other rice types, and yeast heterologously expressing japonica-type PCR1 was more sensitive to Zn than was yeast expressing indica-type PCR1. Furthermore, japonica-type grains accumulated less Zn than did indica-type grains. Our study suggests that rice PCR1 maintains metal ion homeostasis and grain weight and might have been selected for during domestication.


Assuntos
Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Zinco/metabolismo , Sequência de Aminoácidos , Cádmio/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Homeostase , Dados de Sequência Molecular , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
8.
Plant J ; 69(2): 278-88, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21919981

RESUMO

Heavy metals such as cadmium (Cd) and mercury (Hg) are toxic pollutants that are detrimental to living organisms. Plants employ a two-step mechanism to detoxify toxic ions. First, phytochelatins bind to the toxic ion, and then the metal-phytochelatin complex is sequestered in the vacuole. Two ABCC-type transporters, AtABCC1 and AtABCC2, that play a key role in arsenic detoxification, have recently been identified in Arabidopsis thaliana. However, it is unclear whether these transporters are also implicated in phytochelatin-dependent detoxification of other heavy metals such as Cd(II) and Hg(II). Here, we show that atabcc1 single or atabcc1 atabcc2 double knockout mutants exhibit a hypersensitive phenotype in the presence of Cd(II) and Hg(II). Microscopic analysis using a Cd-sensitive probe revealed that Cd is mostly located in the cytosol of protoplasts of the double mutant, whereas it occurs mainly in the vacuole of wild-type cells. This suggests that the two ABCC transporters are important for vacuolar sequestration of Cd. Heterologous expression of the transporters in Saccharomyces cerevisiae confirmed their role in heavy metal tolerance. Over-expression of AtABCC1 in Arabidopsis resulted in enhanced Cd(II) tolerance and accumulation. Together, these results demonstrate that AtABCC1 and AtABCC2 are important vacuolar transporters that confer tolerance to cadmium and mercury, in addition to their role in arsenic detoxification. These transporters provide useful tools for genetic engineering of plants with enhanced metal tolerance and accumulation, which are desirable characteristics for phytoremediation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Cádmio/metabolismo , Mercúrio/metabolismo , Fitoquelatinas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biodegradação Ambiental , Transporte Biológico/fisiologia , Expressão Gênica , Técnicas de Inativação de Genes , Mutação , Fenótipo , Fitoquelatinas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Protoplastos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico/fisiologia , Vacúolos/metabolismo
9.
Plants (Basel) ; 7(4)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551673

RESUMO

For centuries, humans have grown and used structures based on vascular tissues in plants. One could imagine that life would have developed differently without wood as a resource for building material, paper, heating energy, or fuel and without edible tubers as a food source. In this review, we will summarise the status of research on Arabidopsis thaliana vascular development and subsequently focus on how this knowledge has been applied and expanded in research on the wood of trees and storage organs of crop plants. We will conclude with an outlook on interesting open questions and exciting new research opportunities in this growing and important field.

10.
Curr Biol ; 27(17): R973-R978, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898670

RESUMO

As sessile organisms, terrestrial plants have evolved sophisticated mechanisms to coordinate the growth and development of two distinct systems, the shoot and the root, in response to environmental fluctuations. Adaptive systemic responses are accomplished by shoot-root communication, which involves diverse long-distance signalling molecules. During the last few decades, various genetic, biochemical, molecular, and grafting studies have identified multiple long-distance signalling molecules which are crucial for plants to adapt to external changes. In this minireview, the long-distance signals implicated in systemic responses to various environmental cues are discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
11.
Mol Plant ; 9(3): 338-355, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26902186

RESUMO

Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental processes and functions necessary for life on dry land. These results suggest that ABC transporters multiplied during evolution and assumed novel functions that allowed plants to adapt to terrestrial environmental conditions. Examining the literature on plant ABC transporters from this viewpoint led us to propose that diverse ABC transporters enabled many unique and essential aspects of a terrestrial plant's lifestyle, by transporting various compounds across specific membranes of the plant.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Adaptação Fisiológica , Animais , Fenômenos Fisiológicos Vegetais
12.
PLoS One ; 8(12): e81978, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349166

RESUMO

Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.


Assuntos
Brefeldina A/farmacologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlorella vulgaris/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lipídeos de Membrana/biossíntese , Proteínas de Algas/genética , Biocombustíveis , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlorella vulgaris/genética , Chlorella vulgaris/metabolismo , Meios de Cultura , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Expressão Gênica/efeitos dos fármacos , Lipídeos de Membrana/agonistas , Oxazinas , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA